ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2016-07-19
    Description: Performance and accuracy of machine learning techniques to segment rock grains, matrix and pore voxels from a 3-D volume of X-ray tomographic (XCT) grayscale rock images was evaluated. The segmentation and classification capability of unsupervised (k-means, fuzzy c-means, self-organized maps), supervised (artificial neural networks, least-squares support vector machines) and ensemble classifiers (bragging and boosting) were tested using XCT images of andesite volcanic rock, Berea sandstone, Rotliegend sandstone and a synthetic sample. The averaged porosity obtained for andesite (15.8 ± 2.5 %), Berea sandstone (16.3 ± 2.6 %), Rotliegend sandstone (13.4 ± 7.4 %) and the synthetic sample (48.3 ± 13.3 %) is in very good agreement with the respective laboratory measurement data and varies by a factor of 0.2. The k-means algorithm is the fastest of all machine learning algorithms, whereas a least-squares support vector machine is the most computationally expensive. Metrics entropy, purity, mean square root error, receiver operational characteristic curve and 10 K-fold cross-validation were used to determine the accuracy of unsupervised, supervised and ensemble classifier techniques. In general, the accuracy was found to be largely affected by the feature vector selection scheme. As it is always a trade-off between performance and accuracy, it is difficult to isolate one particular machine learning algorithm which is best suited for the complex phase segmentation problem. Therefore, our investigation provides parameters that can help in selecting the appropriate machine learning techniques for phase segmentation.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-31
    Description: Despite the availability of both commercial and open-source software, an ideal tool for digital rock physics analysis for accurate automatic image analysis at ambient computational performance is difficult to pinpoint. More often, image segmentation is driven manually, where the performance remains limited to two phases. Discrepancies due to artefacts cause inaccuracies in image analysis. To overcome these problems, we have developed CobWeb 1.0, which is automated and explicitly tailored for accurate greyscale (multiphase) image segmentation using unsupervised and supervised machine learning techniques. In this study, we demonstrate image segmentation using unsupervised machine learning techniques. The simple and intuitive layout of the graphical user interface enables easy access to perform image enhancement and image segmentation, and further to obtain the accuracy of different segmented classes. The graphical user interface enables not only processing of a full 3-D digital rock dataset but also provides a quick and easy region-of-interest selection, where a representative elementary volume can be extracted and processed. The CobWeb software package covers image processing and machine learning libraries of MATLAB® used for image enhancement and image segmentation operations, which are compiled into series of Windows-executable binaries. Segmentation can be performed using unsupervised, supervised and ensemble classification tools. Additionally, based on the segmented phases, geometrical parameters such as pore size distribution, relative porosity trends and volume fraction can be calculated and visualized. The CobWeb software allows the export of data to various formats such as ParaView (.vtk), DSI Studio (.fib) for visualization and animation, and Microsoft® Excel and MATLAB® for numerical calculation and simulations. The capability of this new software is verified using high-resolution synchrotron tomography datasets, as well as lab-based (cone-beam) X-ray microtomography datasets. Regardless of the high spatial resolution (submicrometre), the synchrotron dataset contained edge enhancement artefacts which were eliminated using a novel dual filtering and dual segmentation procedure.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-20
    Description: Despite the availability of both commercial and open source software, an ideal tool for digital rock physics analysis for accurate automatic image analysis at ambient computational performance is difficult to pin point. More often image segmentation is driven manually where the performance remains limited to two phases. Discrepancies due to artefacts causes inaccuracies in image analysis. To overcome these problems, we have developed CobWeb 1.0 which is automated and explicitly tailored for accurate grayscale (multi-phase) image segmentation using unsupervised and supervised machine learning techniques. The simple and intuitive layout of the graphical user interface enables easy access to perform Image enhancement, Image segmentation and further to obtain the accuracy of different segmented classes. The graphical user interface enables not only processing of a full 3D digital rock dataset but also provides a quick and easy region-of-interest selection, where a representative elementary volume can be extracted and processed. The CobWeb software package covers image processing and machine learning libraries of MATLAB® used for image enhancement and image segmentation operations, which are compiled into series of windows executable binaries. Segmentation can be performed using unsupervised, supervised and ensemble classification tools. Additionally, based on the segmented phases, geometrical parameters such as pore size distribution, relative porosity trends and volume fraction can be calculated and visualized. The CobWeb software allows the export of data to various formats such as ParaView (.vtk), DSI Studio (.fib) for visualization and animation and Microsoft® Excel and MATLAB® for numerical calculation and simulations. The capability of this new software is verified using high-resolution synchrotron tomography datasets, as well as lab-based (cone-beam) X-ray micro-tomography datasets. Albeit the high spatial resolution (sub-micrometer), the synchrotron dataset contained edge enhancement artefacts which were eliminated using a novel dual filtering and dual segmentation procedure.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-01
    Print ISSN: 0098-3004
    Electronic ISSN: 1873-7803
    Topics: Geosciences , Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...