ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 483-489 
    ISSN: 0006-3592
    Keywords: microbial fermentation control ; neural network simulation ; backpropagation ; network topology design ; fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article discusses the development of a prototype neural network-based supervisory control system for Bacillus thuringiensis fermentations. The input pattern to the neural network included the type of inoculum, operation temperature, pH value, accumulated process time, optical density in fermentation medium, and change in optical density. The output from the neural network was the predicted optical density for the next sampling time. The control system has been implemented in both a computer simulation and a laboratory fermentation experiment with promising results. © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 460-470 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: It is well established that pure and simple microbial competitors cannot coexist at a steady state if their environment is homogeneous. For the case of two microbial populations competing purely and simply in two interconnected chemostats having time-invariant input(s), it is known from the literature that a stable steady state of coexistence arises in domains of the operating parameters space and is attributed to the spatial heterogeneities of the system, which allow a different species to have the competitive advantage in each one of the two sub-environments. This article investigates whether the aforementioned result can be extended to the case of three species competing in three interconnected vessels. By studying all possible alternate configurations of the three-chemostat system, it is shown that coexistence of the three species is impossible, except possibly for some discrete values of the operating parameters. Some potential explanations for the results are discussed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...