ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 1063-1086 
    ISSN: 0271-2091
    Keywords: Boundary element method ; Local mesh refinement ; Convergence ; Small interparticle gap ; Adaptive subdomain integration ; Superparametric ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A second-order boundary element technique was developed to simulate the 3D hydrodynamic interactions between multiple particles of arbitrary shape. This paper reports the results of an extensive validation procedure aimed at demonstrating the convergence characteristics of the technique, especially in cases where the particles are in close proximity. The quadratic elements are superior to the lower-order elements in terms of accuracy, computer storage and CPU time required, thus resulting in a significant improvement in the overall computational efficiency. Superparametric discretization improves the accuracy over isoparametric discretization but lowers the convergence rate of the method. When the interparticle gap becomes very small (less than 1% of the particle radius), the numerical solution diverges owing to inaccurate determination of the element contributions in the gap region. An adaptive subdomain integration scheme was developed that dramatically improved the integration accuracy and provided convergent solutions for problems of very small gaps down to 0-01% of the particle diameter.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 953-981 
    ISSN: 0271-2091
    Keywords: Galerkin boundary element method ; Unit-cell approach ; Traction discontinuities ; Suspension rheology ; High fibre aspect ratio ; flow through a porous medium ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A discrete Galerkin boundary element technique with a quadratic approximatión of the variables was developed to simulate the three-dimensional (3D) viscous flow established in periodic assemblages of particles in suspensions and within a periodic porous medium. The Batchelor's unit-cell approach is used. The Galerkin formulation effectively handles the discontinuity in the traction arising in flow boundaries with edges or corners, such as the unit cell in this case. For an ellipsoidal dilute suspension over the range of aspect ratio studied (1 to 54), the numerical solutions of the rotational velocity of the particles and the viscosity correction were found to agree with the analytic values within 0.2% and 2% respectively, even with coarse meshes. In a suspension of cylindrical particles the calculated period of rotation agreed with the experimental data. However, Burgers' predictions for the correction to the suspension viscosity were found to be 30% too low and therefore the concept of the equivalent ellipsoidal ratio is judged to be inadequate. For pressure-driven flow through a fixed bed of fibres, the prediction on the permeability was shown to deviate by as much as 10% from the value calculated based on approximate permeability additivity rules using the corresponding values for planar flow past a periodic array of parallel cylinders. These applications show the versatility of the technique for studying viscous flows in complicated 3D geometries.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...