ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2003
    Keywords: Geothermics ; Plate tectonics ; South ; America ; Borehole geophys. ; Fluids ; thermal ; state, ; shear ; heating, ; radioactive ; heat ; generation ; EPSL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-13
    Description: Interpretation of new multichannel seismic reflection profiles indicates that the Palomares margin formed by crustal-scale extension and coeval magmatic accretion during middle to late Miocene opening of the Algero-Balearic basin. The margin formed at the transition between thinned continental crust intruded by arc volcanism and back-arc oceanic crust. Deformation produced during the later positive inversion of the margin offshore and onshore is partitioned between ~N50°E striking reverse faults and associated folds like the Sierra Cabrera and Abubacer anticlines, and N10-20°E sinistral strike-slip faults like Palomares and Terreros faults. Parametric sub-bottom profiles and multibeam bathymetry offshore, structural analysis, available GPS geodetic displacement data and earthquake focal mechanisms jointly indicate that tectonic inversion of the Palomares margin is currently active. The Palomares margin shows a structural pattern comparable to the north Maghrebian margins where Africa-Eurasia plate convergence is accommodated by NE-SW reverse faults, NNW-SSE sinistral faults and WNW-ESE dextral ones. Contractive structures at this margin contribute to the general inversion of the Western Mediterranean since ~7 Ma ago, coeval to inversion at the Algerian margin. Shortening at the Alboran ridge and Al-Idrisi faults occurred later, since 5 Ma, indicating a westward propagation of the compressional inversion of the Western Mediterranean.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-01
    Description: Seamounts or submarine volcanoes frequently collide with the overriding crust along presently active subduction zones locally modifying stress and permanent deformation patterns. Dynamics of this process is not fully understood and several end-member scenarios of seamount-crust interaction are proposed. Here, we use high-resolution 3D numerical models to investigate evolution of crustal deformation and stress distribution within the upper plate induced by the underthrusting of subducting seamounts. The dynamical effects of the upper plate strength, subduction interface strength, and strain weakening of the crust are investigated. Experiment results demonstrate characteristic crustal fracturing patterns formed in response to different seamount-crust interaction scenarios. Indenting seamounts strongly deform the overriding plate along a corridor as wide as the underthrusting seamount by constantly shifting sub-vertical shear zones rooted at the seamount extensions. A reentrant develops during initial seamount collision. A topographic bulge atop the seamount and lateral ridges emerge from further seamount subduction. Obtained stress pattern show areas of large overpressure above the rearward, and large underpressure above the trenchward flank of the seamount. Results of numerical experiments are consistent with seismic reflection images and seismic velocity models of the upper plate in areas of seamount subduction along the Middle America Trench and give important insights into the long-lasting question, whether subducting seamounts and rough seafloor act as barriers or asperities for megathrust earthquakes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-24
    Description: We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ∼1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-08
    Description: The South Chilean marine fore arc (35°S–40°S) is separated into four tectonic segments, Concepción North, Concepción South, Nahuelbuta, and Tolten (from north to south). These are each characterized by their individual tectonic geomorphology and reflect different ways of mechanical and kinematic interaction of the convergent Nazca and South American plates. Splay faults that cut through continental framework rock are seismically imaged in both Concepción segments and the Tolten Segment. Additionally, the Concepción South Segment exhibits prominent upper plate normal faults. Normal faults apparently relate to uplift caused by sediment underthrusting at depth. This has led to oversteepening and gravitational collapse of the marine fore arc. There is also evidence for sediment underthrusting and basal accretion to the overriding plate in the Tolten Segment. There, uplift of the continental slope has created a landward inclined seafloor over a latitudinal distance of 50 km. In the Nahuelbuta Segment transpressive upper plate faults, aligned oblique to the direction of plate motion, control the seafloor morphology. Based on a unique acoustic data set including 〉90% of bathymetric coverage of the continental slope we are able to reveal an along-strike heterogeneity of a complexly deformed marine fore arc which had escaped attention in previous studies that only considered the structure along transects normal to the plate margin.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-02
    Description: Article On 1 April 2014 the Mw 8.1 Iquique earthquake seemed to close the well-recognized northern Chile seismic gap, producing only a small rupture. Here, the authors present seismic reflection and multibeam bathymetry data from the area suggesting that seamount subduction played a role in halting the rupture. Nature Communications doi: 10.1038/ncomms9267 Authors: Jacob Geersen, César R. Ranero, Udo Barckhausen, Christian Reichert
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-05
    Description: In 2011 we acquired an 11x55 km, 3D seismic reflection volume across the Costa Rica margin, NW of the Osa Peninsula, to accurately image the subduction thrust in 3D, to examine fault-zone properties, and to infer the hydrogeology that controls fluid accumulation along the thrust. Following processing to remove water column multiples, noise, and acquisition artifacts, we constructed a 3D seismic velocity model for Kirchhoff pre-stack depth migration. Images of the plate-boundary thrust show high reflection amplitudes underneath the mid- to lower slope that we attribute to fluid-rich, poorly drained portions of the subduction thrust. At ~ 5 km sub seafloor, beneath the upper slope, the plate interface abruptly becomes weakly reflective, which we interpret as a transition to a well-drained subduction thrust. Mineral dehydration during diagenesis may also diminish at 5 km sub seafloor to reduce fluid production and contribute to the down dip change from high to low amplitude. There is also a layered fabric and systems of both thrust and normal faults within the overriding plate that form a “plumbing system”. Faults commonly have fault-plane reflections and are presumably fluid charged. The faults and layered fabric form three compartmentalized hydrogeologic zones: 1) a shallow NE-dipping zone beneath the slope; 2) a steeply SW-dipping zone beneath the shelf slope break; 3) a NE-dipping zone beneath the shelf. The more direct pathway in the middle zone drains the subduction thrust more efficiently and contributes to reduced fluid pressure, elevated effective stress, and creates greater potential for unstable coseismic slip.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-12
    Description: We investigate potential relations between variations in seafloor relief and age of the incoming plate and interplate seismicity. Westward from Osa Peninsula in Costa Rica a major change in the character of the incoming Cocos Plate is displayed by abrupt lateral variations in seafloor depth and thermal structure. Here, a Mw 6.4 thrust earthquake was followed by three aftershock clusters in June 2002. Initial relocations indicate that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of OBH and land stations ~80 km to the northwest were deployed. By adding readings from permanent local stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocate this catalog using a non-linear probabilistic approach within both, a 1-D and a 3-D P wave velocity models. The main shock occurred ~25 km from the trench and probably along the plate interface at 5 to 10 km depth. We analyze teleseismic data to further constrain the rupture process of the main shock. The best depth estimates indicate that most of the seismic energy was radiated at shallow depth below the continental slope, supporting the nucleation of the Osa earthquake at ~6 km depth. The location and depth coincide with the plate boundary imaged in pre-stack depth-migrated reflection lines shot near the nucleation area. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interplate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-14
    Description: Some commonly referenced thermal-mechanical models of current subduction zones imply temperatures that are 100–500 °C colder at 30–80-km depth than pressure–temperature conditions determined thermobarometrically from exhumed metamorphic rocks. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting metamorphic reactions and associated fluid release, subarc...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-11
    Description: [1]  We used high-resolution mapping to document 161 sites of potential fluid seepage on the shelf and slope regions where no geophysical seep indicators had been reported. Identified potential seabed seepage sites show both high-backscatter anomalies and bathymetric expressions, such as pockmarks, mounds, and ridges. Almost all identified seabed features are associated with bright spots and flat spots beneath, as mapped within the 3D seismic grid. We obtained EM122 multibeam data using closely spaced receiver beams and 4-5 times overlapping multi-beam swaths, which greatly improved the sounding density and geologic resolvability of the data. At least one location shows an acoustic plume in the water column on a 3.5 kHz profile, and this plume is located along a fault trace and above surface and subsurface seepage indicators. Fluid indicators are largely associated with folds and faults within the sediment section, and many of the faults continue into and offset the reflective basement. A dense pattern of normal faults is seen on the outer-shelf in the multibeam bathymetry, backscatter, and 3D seismic data, and the majority of fluid seepage indicators lie along mapped fault traces. Furthermore, linear mounds, ridges, and pockmark chains are found on the upper, middle, and lower slope regions. The arcuate shape of the shelf edge, projection of the Quepos Ridge, and high density of potential seep sites suggests that this area may be a zone of former seamount/ridge subduction. These results demonstrate a much greater potential seep density and distribution than previously reported across the Costa Rican margin.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...