ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-30
    Description: Several satellite missions are currently available to provide thermal infrared data at different spatial resolutions and revisit time. Furthermore, new missions are planned thus enabling to keep a nearly continuous ‘eye’ on thermal volcanic activity around the world. This massive volume of data requires the development of artificial intelligence (AI) techniques for the automatic processing of satellite data in order to extract significant information about volcano conditions in a short time. Here, we propose a robust machine learning approach to accurately detect, recognize and quantify high-temperature volcanic features using Sentinel-2 MultiSpectral Instrument (S2-MSI) imagery. We use the entire archive of high spatial resolution satellite data containing more than 6000 S2-MSI scenes at ten different volcanoes around the world. Combining a ‘top-down’ cascading architecture, two different machine learning models, a scene classifier (SqueezeNet) and a pixel-based segmentation model (random forest), we achieved a very high accuracy, namely 95%. These results show that the cascading approach can be applied in near-real time to any available satellite image, providing a full description of the scene, with an important contribution to the monitoring, mapping and characterization of volcanic thermal features.
    Description: Published
    Description: 171
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Volcanic ash cloud detection is a crucial component of volcano monitoring and a valuable tool for investigating ash cloud dispersion, which is paramount for enhancing the safety of human settlements and air traffic. The latest generation of high-resolution satellite sensors (e.g., EUMETSAT MSG Spinning Enhanced Visible and InfraRed Imager, SEVIRI) provides radiometric estimates for monitoring volcanic clouds on a global scale efficiently and timely. However, these radiometric intensities are not always discriminative enough to detect volcanic ash clouds due to the spectral limitations of these instruments and the complex nature of some volcanic clouds, such as low concentration resulting in an averaged detected radiometric estimate comparable to the background. Here, we evaluate the ability of a Convolutional Neural Network (CNN) to detect and track the dispersion of volcanic ash clouds into the atmosphere, exploiting a variety of spatial and spectral intensity information mainly coming from SEVIRI Ash RGB images. We train a deep CNN model through transfer learning, and demonstrate that the trained models overcome the limitations of algorithms based solely on pixel intensity, whether traditional or machine learning, resulting in increased performance compared to other methods. We illustrate the operation of this model using the paroxysmal explosive events that occurred at Mt. Etna between 2020 and 2022.
    Description: Published
    Description: 108046
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Volcano explosive eruptions ; satellite remote sensing ; volcanic ash clouds ; machine learning ; deep learning ; Etna volcano ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...