ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019-08-07
    Description: The latest development of the ship-routing model published in Mannarini et al. (2016a) is VISIR-1.b, which is presented here. The new version of the model targets large ocean-going vessels by considering both ocean surface gravity waves and currents. To effectively analyse currents in a graph-search method, new equations are derived and validated against an analytical benchmark. A case study in the Atlantic Ocean is presented, focussing on a route from the Chesapeake Bay to the Mediterranean Sea and vice versa. Ocean analysis fields from data-assimilative models (for both ocean state and hydrodynamics) are used. The impact of waves and currents on transatlantic crossings is assessed through mapping of the spatial variability in the tracks, an analysis of their kinematics, and their impact on the Energy Efficiency Operational Indicator (EEOI) of the International Maritime Organization. Sailing with or against the main ocean current is distinguished. The seasonal dependence of the EEOI savings is evaluated, and greater savings with a higher intra-monthly variability during winter crossings are indicated in the case study. The total monthly mean savings are between 2 % and 12 %, while the contribution of ocean currents is between 1 % and 4 %. Several other ocean routes are also considered, providing a pan-Atlantic scenario assessment of the potential gains in energy efficiency from optimal tracks, linking them to regional meteo-oceanographic features.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-14
    Description: VISIR-I.b, the latest development of the ship routing model published in Mannarini et al. (2016a), is here presented. The new model version targets large ocean-going vessels by accounting for both waves and ocean currents. In order to effectively use currents in a graph-search method, new equations are derived and validated versus analytical benchmarks. A case study is computed in the Atlantic Ocean, on a route from the Chesapeake Bay to the Mediterranean Sea and vice versa. Ocean analysis fields from data-assimilative models (for both ocean state and hydrodynamics) are employed. The impact of waves and ocean currents on transatlantic crossings is assessed through mapping of the spatial variability of the routes, analysis of their kinematics, distribution of the optimal voyage duration vs. its length, and impact on the Energy Efficiency Operational Indicator of the International Maritime Organization. It is distinguished between sailing with or against the main ocean current. The seasonal dependence of the savings is evaluated, indicating, for the featured case study, larger savings during the summer crossings and larger intra-monthly variability in winter. The monthly-mean savings sum up to values between 3 and 12 %, while the contribution of ocean currents is between 1 and 4 %. Also, several other ocean routes are considered, providing a pan-Atlantic scenario assessment of the potential gains in energy efficiency from optimal tracks and linking them to regional meteo-oceanographic features.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D8.10 . AtlantOS, 11 pp.
    Publication Date: 2019-03-11
    Description: This task will use outputs from the Copernicus Marine Environment Monitoring Service (CMEMS) to develop a system for ship routing hazard mapping. Starting from knowledge of the environmental fields affecting vessel seakeeping, the system will estimate hazard and cost associated to known routes in the Atlantic Ocean. The system will employ model analysis or reanalysis of sea state (wave height, period, and direction), hydrodynamics (near surface ocean currents), and meteorological (wind) models. The system will produce an objective route hazard assessment, based on UNIBO experience in hazard mapping and probabilistic approaches. The investigated routes will be selected based on the most relevant ones, according to the AIS (Automatic Information System) density maps. In particular, the existing CMCC ship routing code (VISIR) will be first of all validated through inter-­comparison with analytical benchmarks and other published models. VISIR’s functionalities will then be extended for optimizing the operational costs (bunker) of large ocean-­going vessels sailing along routes compliant with IMO safety recommendations. The same approach will be extended to computation of vessel operational costs along the route. This information will build up a database, queried by the end-­user through a graphical interface for visualizing customized maps of route hazard and cost for user provided parameters [D8.10]. The fitness of AtlantOS for ship routing will be analyzed with a dedicated report [D8.14].
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D8.14 . AtlantOS, 20 pp.
    Publication Date: 2019-05-28
    Description: This report outlines the fitness for use and fitness for purpose of AtlantOS for low carbon ship routing
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...