ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1987-07-01
    Print ISSN: 0003-021X
    Electronic ISSN: 1558-9331
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-06-01
    Print ISSN: 1531-1074
    Electronic ISSN: 1557-8070
    Topics: Biology , Physics
    Published by Mary Ann Liebert
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-01-01
    Print ISSN: 0003-2670
    Electronic ISSN: 1873-4324
    Topics: Chemistry and Pharmacology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 199O's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
    Keywords: Lasers and Masers
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.
    Keywords: Mechanical Engineering
    Type: GSFC-E-DAA-TN13658 , Aerospace Mechanism Symposium; May 14, 2014 - May 16, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Mars Organic Molecule Analyzer - Mass Spectrometer (MOMA-MS) is an instrument in the MOMA instrument suite for the European Space Agency (ESA) ExoMars 2020 Rover. The rover is Planetary Protection Mission Category IVb, the first IVb mission since the Viking missions in the 1970s. Within the sample path of the MOMA instrument suite, the hardware surfaces of the must be sanitized to a level of less than 0.03 spore/m sq. To meet this requirement, the MS sample path was subjected to Dry Heat Microbial Reduction (DHMR) to decrease the number of viable spores by 4 orders of magnitude from a measured 88 spores/m sq to 0.009 spores/m sq. Before DHMR, the hardware is handled using standard cleanroom practices. After DHMR, planetary protection filters protect the sample path for most of integration, but when sample path exposure is required, aseptic operations are instituted and exposure times are kept to an absolute minimum. The surface area of exposure is also taken into account to determine safe exposure times. Before work begins, the ISO class 5 aseptic workspace is cleaned and tested for surface and airborne bioburden, and all tools that will contact or be used near sample path surfaces are sterilized. During the exposure activity, sterile garments are worn, sterile gloves are changed as often as necessary, and the environment is monitored with active and passive fallout for bioburden and real time airborne particle counts. Sterile tools are handled by a two person team so that the operator touches only the tool and not the exterior surfaces of the sterilization pouch, and a sterile operating field is established as a safe place to organize tools or parts during the aseptic operations. In cases where aseptic operations are not feasible, localized DHMR is used after exposure. Any breach in the planetary protection cleanliness can necessitate repeating instrument level DHMR, which not only has significant cost and schedule implications, it also become a risk to hardware that is not rated for repeated long exposures to high temperatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN58788 , COSPAR 2018; Jul 14, 2018 - Jul 22, 2018; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Trace degradation of fluorocarbon or halocarbon materials must be addressed in their application in sensitive systems. As the dimensions and/or tolerances of components in a system decrease, the sensitivity of the system to trace fluorocarbon or halocarbon degradation products increases. Trace quantities of highly reactive degradation products from fluorocarbons have caused a number of failures of flight hardware. It is of utmost importance that the risk of system failure, resulting from trace amounts of reactive fluorocarbon degradation products be addressed in designs containing fluorocarbon or halocarbon materials. Thermal, electrical, and mechanical energy input into the system can multiply the risk of failure.
    Keywords: Composite Materials
    Type: 34th International SAMPE Technical Conference; Sep 01, 2002; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.
    Keywords: Mechanical Engineering
    Type: GSFC-E-DAA-TN15011 , Aerospace Mechanisms Symposium; May 14, 2014 - May 16, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
    Keywords: Lasers and Masers
    Type: The International Society for Optical Engineering (SPIE); Jan 21, 2006 - Jan 26, 2006; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-08
    Description: A key science priority for planetary exploration is to search for signs of life in our Solar System. Life-detection mission concepts aim to assess whether or not biomolecular signatures of life are present, which requires highly sensitive instrumentation. This introduces greater risk of false positives, and perhaps false negatives. Stringent science-derived contamination requirements for achieving science measurements on life-detection missions necessitate mitigation approaches that minimize, protect from, and prevent science-relevant contamination of critical surfaces of the science payload and provide high confidence to life-detection determinations. To this end, we report on technology advances that focus on understanding contamination transfer from pre-launch processing to end of mission using high-fidelity physics in the form of computational fluid dynamics and sorption physics for monolayer adsorption/desorption, and on developing a new full-spacecraft bio-molecular barrier design that restricts contamination of the spacecraft and instruments by the launch vehicle hardware. The bio-molecular barrier isolates the spacecraft from biological, molecular, and particulate contamination from the external environment. Models were used to evaluate contamination transport for a designs reference mission that utilizes the barrier. Results of the modeling verify the efficacy of the barrier and an in-cruise decontamination activity. Overall mission contamination tracking from launch to science operations demonstrated exceptionally low probability on contamination impacting science measurements, meeting the stringent contamination requirements of femtomolar levels of compounds. These advances will enable planetary missions that aim to detect and identify signatures of life in our Solar System.
    Electronic ISSN: 2673-5075
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...