ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove (2012): Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral. PLoS ONE, 7(4), e34659, https://doi.org/10.1371/journal.pone.0034659.s005
    Publication Date: 2024-03-15
    Description: As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
    Keywords: Acropora millepora; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene expression, fold change, relative; Gene expression (incl. proteomics); Gene name; Heron_Reef; Heron Reef, Great Barrier Reef, Queensland; Identification; Incubation duration; Laboratory experiment; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Photosynthetic capacity, oxygen production per cell; Primary production/Photosynthesis; Respiration; Respiration rate, oxygen, dark per cell; Salinity; Single species; South Pacific; Species; Symbiodinium cell concentration; Temperate; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 19866 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...