ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-01
    Description: As an echolocating bat closes in on a flying insect, it increases call emission to rates beyond 160 calls per second. This high call rate phase, dubbed the terminal buzz, has proven enigmatic because it is unknown how bats are able to produce calls so quickly. We found that previously unknown and highly specialized superfast muscles power rapid call rates in the terminal buzz. Additionally, we show that laryngeal motor performance, not overlap between call production and the arrival of echoes at the bat's ears, limits maximum call rate. Superfast muscles are rare in vertebrates and always associated with extraordinary motor demands on acoustic communication. We propose that the advantages of rapid auditory updates on prey movement selected for superfast laryngeal muscle in echolocating bats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elemans, Coen P H -- Mead, Andrew F -- Jakobsen, Lasse -- Ratcliffe, John M -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1885-8. doi: 10.1126/science.1207309.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark. coen@biology.sdu.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21960635" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chiroptera/*physiology ; *Echolocation ; Insects ; Laryngeal Muscles/*physiology ; Larynx/physiology ; Muscle Contraction ; Muscle Fibers, Fast-Twitch/*physiology ; Muscle Relaxation ; Sound ; Vocal Cords/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-26
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-25
    Description: Oilbirds are active at night, foraging for fruits using keen olfaction and extremely light-sensitive eyes, and echolocate as they leave and return to their cavernous roosts. We recorded the echolocation behaviour of wild oilbirds using a multi-microphone array as they entered and exited their roosts under different natural light conditions. During echolocation, the birds produced click bursts (CBs) lasting less than 10 ms and consisting of a variable number (2–8) of clicks at 2–3 ms intervals. The CBs have a bandwidth of 7–23 kHz at –6 dB from signal peak frequency. We report on two unique characteristics of this avian echolocation system. First, oilbirds reduce both the energy and number of clicks in their CBs under conditions of clear, moonlit skies, compared with dark, moonless nights. Second, we document a frequency mismatch between the reported best frequency of oilbird hearing (approx. 2 kHz) and the bandwidth of their echolocation CBs. This unusual signal-to-sensory system mismatch probably reflects avian constraints on high-frequency hearing but may still allow oilbirds fine-scale, close-range detail resolution at the upper extreme (approx. 10 kHz) of their presumed hearing range. Alternatively, oilbirds, by an as-yet unknown mechanism, are able to hear frequencies higher than currently appreciated.
    Keywords: behaviour, physiology, ecology
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...