ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-10-14
    Description: DNA double-strand breaks are generated by genotoxic agents and by cellular endonucleases as intermediates of several important physiological processes. The cellular response to genotoxic DNA breaks includes the activation of transcriptional programs known primarily to regulate cell-cycle checkpoints and cell survival. DNA double-strand breaks are generated in all developing lymphocytes during the assembly of antigen receptor genes, a process that is essential for normal lymphocyte development. Here we show that in murine lymphocytes these physiological DNA breaks activate a broad transcriptional program. This program transcends the canonical DNA double-strand break response and includes many genes that regulate diverse cellular processes important for lymphocyte development. Moreover, the expression of several of these genes is regulated similarly in response to genotoxic DNA damage. Thus, physiological DNA double-strand breaks provide cues that can regulate cell-type-specific processes not directly involved in maintaining the integrity of the genome, and genotoxic DNA breaks could disrupt normal cellular functions by corrupting these processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605662/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605662/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bredemeyer, Andrea L -- Helmink, Beth A -- Innes, Cynthia L -- Calderon, Boris -- McGinnis, Lisa M -- Mahowald, Grace K -- Gapud, Eric J -- Walker, Laura M -- Collins, Jennifer B -- Weaver, Brian K -- Mandik-Nayak, Laura -- Schreiber, Robert D -- Allen, Paul M -- May, Michael J -- Paules, Richard S -- Bassing, Craig H -- Sleckman, Barry P -- R01 AI047829/AI/NIAID NIH HHS/ -- R01 AI047829-09/AI/NIAID NIH HHS/ -- R01 CA125195/CA/NCI NIH HHS/ -- R01 CA125195-02/CA/NCI NIH HHS/ -- England -- Nature. 2008 Dec 11;456(7223):819-23. doi: 10.1038/nature07392. Epub 2008 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/drug effects/*metabolism ; Cell Cycle Proteins/drug effects ; Cell Line ; *DNA Breaks, Double-Stranded ; DNA-Binding Proteins/drug effects ; Enzyme Inhibitors/pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental/drug effects/*genetics ; Homeodomain Proteins/metabolism ; Mice ; Mice, Knockout ; Mice, SCID ; NF-kappa B/metabolism ; Protein-Serine-Threonine Kinases/drug effects ; Tumor Suppressor Proteins/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...