ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 264 (2009): 4-15, doi:10.1016/j.margeo.2009.01.009.
    Description: The nearly complete coverage of the U.S. Atlantic continental slope and rise by multibeam bathymetry and backscatter imagery provides an opportunity to reevaluate the distribution of submarine landslides along the margin and reassess the controls on their formation. Landslides can be divided into two categories based on their source areas: those sourced in submarine canyons and those sourced on the open continental slope and rise. Landslide distribution is in part controlled by the Quaternary history of the margin. They cover 33% of the continental slope and rise of the glacially influenced New England margin, 16% of the sea floor offshore of the fluvially dominated Middle Atlantic margin, and 13% of the sea floor south of Cape Hatteras. The headwall scarps of open-slope sourced landslides occur mostly on the lower slope and upper rise while they occur mostly on the upper slope in the canyon-sourced ones. The deposits from both landslide categories are generally thin (mostly 20–40 m thick) and comprised primarily of Quaternary material, but the volumes of the open-slope sourced landslide deposits can be larger (1–392 km3) than the canyon-sourced ones (1–10 km3). The largest failures are located seaward of shelf-edge deltas along the southern New England margin and near salt domes that breach the sea floor south of Cape Hatteras. The spatial distribution of landslides indicates that earthquakes associated with rebound of the glaciated part of the margin or earthquakes associated with salt domes were probably the primary triggering mechanism although other processes may have pre-conditioned sediments for failure. The largest failures and those that have the potential to generate the largest tsunamis are the open-slope sourced landslides.
    Description: The U.S. Nuclear Regulatory Commission and the U.S. Geological Survey are acknowledged for their support of this research.Work was funded by US Nuclear Regulatory Commission grant N6480 Physical study of tsunami sources.
    Keywords: Landslides ; Continental margin ; Atlantic Ocean ; Sediments ; Slope processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-08-01
    Print ISSN: 0025-3227
    Electronic ISSN: 1872-6151
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...