ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 7246-7247 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 3162-3172 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The OH state-resolved angular momentum polarization generated by the H+N2O reaction has been investigated at a mean collision energy of 1.5 eV. The data were obtained under room temperature bulb conditions using 225 nm photolysis of H2S to generate translationally excited H atoms, and employed Doppler-resolved laser induced fluorescence to probe the nascent OH reaction products. The measurements revealed the OH rotational angular momentum, j′, to be aligned in the scattering plane (i.e., in the plane containing the reactant and product relative velocity vectors, k and k′). Furthermore, j′ was found to be preferentially aligned parallel to k′, particularly for lower OH rotational states. Out-of-plane torsional forces have been shown, therefore, to play an important role in generating OH rotation as the fragments separate. The new data are discussed in light of previously published studies of the title reaction, both from our own laboratory, and from those of other workers. Insight into the reaction mechanism is provided by comparison with the photodissociation dynamics of HN3, which helps, in particular, to clarify the origin of the propeller-like OH rotational angular momentum polarization. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 4557-4571 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The product-state-resolved dynamics of the reaction H+CO2→OH(2Π;ν,N,Ω,f)+CO have been explored in the gas phase at 298 K and center-of-mass collision energies of 2.5 and 1.8 eV (respectively, 241 and 174 kJ mol−1), using photon initiation coupled with Doppler-resolved laser-induced fluorescence detection. A broad range of quantum-state-resolved differential cross sections (DCSs) and correlated product kinetic energy distributions have been measured to explore their sensitivity to spin–orbit, Λ-doublet, rotational and vibrational state selection in the scattered OH. The new measurements reveal a rich dynamical picture. The channels leading to OH(Ω,N∼1) are remarkably sensitive to the choice of spin–orbit state: Those accessing the lower state, Ω=3/2, display near-symmetric forward–backward DCSs consistent with the intermediacy of a short-lived, rotating HOCO (X˜ 2A′) collision complex, but those accessing the excited spin–orbit state, Ω=1/2, are strongly focused backwards at the higher collision energy, indicating an alternative, near-direct microscopic pathway proceeding via an excited potential energy surface. The new results offer a new way of reconciling the conflicting results of earlier ultrafast kinetic studies. At the higher collision energy, the state-resolved DCSs for the channels leading to OH(Ω,N∼5–11) shift from forward–backward symmetric toward sideways–forward scattering, a behavior which resembles that found for the analogous reaction of fast H atoms with N2O. The correlated product kinetic energy distributions also bear a similarity to the H/N2O reaction; on average, 40% of the available energy is concentrated in rotation and/or vibration in the scattered CO, somewhat less than predicted by a phase space theory calculation. At the lower collision energy the discrepancy is much greater, and the fraction of internal excitation in the CO falls closer to 30%. All the results are consistent with a dynamical model involving short-lived collision complexes with mean lifetimes comparable with or somewhat shorter than their mean rotational periods. The analysis suggests a potential new stereodynamical strategy, "freeze-frame imaging," through which the "chemical shape" of the target CO2 molecule might be viewed via the measurement of product DCSs in the low temperature environment of a supersonic molecular beam. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 6690-6701 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: OH(OD) quantum state populations, rovibrational quantum state-resolved center-of-mass angular scattering distributions, and H2(HD) coproduct internal energy release distributions have been determined for the hot H atom reactions with H2O and D2O at mean collision energies close to 1.4 eV. The experiments employ pulsed laser photolysis coupled with polarized Doppler-resolved laser induced fluorescence detection of the radical products. The OH(2Π1/2,v′=0,N′=1,A′) and OD(2Π1/2,v′=0,N′=1,A′) angular distributions generated by the two isotopic reactions are quite distinct: that for the reaction with H2O shows intensity over a wide range of center-of-mass scattering angles, and peaks in the sideways direction, while the state-resolved angular distribution for the reaction with D2O displays more scattering in the backward hemisphere. For higher OH(OD) angular momentum states the differences in the angular distributions for the two reactions are less marked, with both systems showing a slight preference for backward scattering. The kinetic energy release distributions are insensitive to OH(OD) quantum state and to isotopic substitution, and reveal that the H2(HD) coproducts are born internally cold at 1.4 eV. OH(OD) quantum state averaged energy disposals in the two reactions are also presented. The new experiments provide detailed mechanistic information about the two reactions and clarify the dominant sources of product OH(OD) rotational excitation. Current theoretical understanding of the reaction is critically assessed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 3173-3180 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The quantum state resolved rotational angular momentum alignments of the OH products of the H+CO2 reaction have been determined for a range of states spanning those most populated by reaction at a collision energy of 2.5 eV. Surprisingly, for all quantum states studied, the angular momentum is shown to be aligned preferentially in the scattering plane, containing the reagent and product relative velocity vectors. The data suggest that out-of-plane HO–CO torsional forces play a significant role in dissociation of the HOCO intermediate. The polarization behavior mirrors observed in the isoelectronic H+N2O reaction [see the accompanying paper, J. Chem. Phys. 113, 3162 (2000)], and the data are compared with those obtained for that system, and with previous theoretical and experimental work on this important reaction. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology A: Chemistry 51 (1990), S. 17-20 
    ISSN: 1010-6030
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Chemical Physics Letters 129 (1986), S. 439-445 
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Chemical Physics Letters 149 (1988), S. 45-50 
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Chemical Physics Letters 150 (1988), S. 6-12 
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Chemical Physics Letters 204 (1993), S. 543-550 
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...