ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-23
    Description: The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. The AIRS is designed to measure atmospheric temperature and water vapor profiles and has demonstrated exceptional radiometric and spectral accuracy and stability in orbit. The International System of Units (SI)-traceability of the derived radiances is achieved by transferring the calibration from the Large Area Blackbody (LABB) with SI traceable temperature sensors, to the On-Board Calibrator (OBC) blackbody during preflight testing. The AIRS views the OBC blackbody and four full aperture space views every scan. A recent analysis of pre-flight and on-board data has improved our understanding of the measurement uncertainty of the Version 5 AIRS L1B radiance product. For temperatures greater than 260 K, the measurement uncertainty is better than 250 mK 1-sigma for most channels. SI-traceability and quantification of the radiometric measurement uncertainty is critical to reducing biases in reanalysis products and radiative transfer models (RTMs) that use AIRS data, as well as establishing the suitability of AIRS as a benchmark for radiances established in the early 2000s.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-25
    Description: We compare the daily mean and standard deviation of the difference between the sea surface skin temperature (SST) derived from clear sky Atmospheric InfraRed Sounder (AIRS) data from seven atmospheric window channels between 2002 and 2020 and collocated Canadian Meteorological Centre (CMC) SST data from the tropical oceans. After correcting the mean difference for cloud contamination and diurnal effects, the remaining bias relative to the CMC SST, is reasonably consistent with estimates of the AIRS absolute accuracy based on the uncertainty of the pre-launch calibration. The time series of the bias produces trends well below the 10 mK/yr level required for climate change evaluations. The trends are in the 2 mK/yr range for the five window channels between 790 and 1231 cm−1, and +5 mK/yr for the shortwave channels. Between 2002 and 2020, the time series of the standard deviation of the difference between the AIRS SST and the CMC SST dropped fairly steadily to below 0.4 K in several AIRS window channels, a level previously only seen in gridded SST products relative to the Argo buoys.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0-30 N and 0-30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0 - 30 N and 0 - 30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The Atmospheric Infrared Spectrometer (AIRS) Science Processing System is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA's Aqua spacecraft. Following from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. Once level-0 data have been received, the level-1A PGEs begin processing, performing such basic housekeeping tasks as ensuring that all the Level-0 data are present and ordering the data according to observation times. The level-1A PGEs then perform geolocation-refinement calculations and conversions of raw data numbers to engineering units. Finally, the level-1A data are grouped into packages, denoted granules, each of which contain the data from a six-minute observation period. The granules are forwarded, along with calibration data, to the Level-1B PGEs for processing into calibrated, geolocated radiance products. The Level-2 PGEs, which are not yet operational, are intended to process the level-1B data into temperature and humidity profiles, and other geophysical properties.
    Keywords: Man/System Technology and Life Support
    Type: NPO-35243 , NASA Tech Briefs, November 2004; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002 and is currently fully operational. AIRS acquires hyperspectral infrared radiances in 2378 channels ranging in wavelength from 3.7-15.4 um with spectral resolution of better than 1200, and spatial resolution of 13.5 km with global daily coverage. The AIRS was designed to measure temperature and water vapor profiles for improvement in weather forecast and improved parameterization of climate processes. Currently the AIRS Level 1B Radiance Products are assimilated by NWP centers worldwide and have shown considerable forecast improvement. Although the calibration of AIRS (〈 200 mK 3 sigma) is sufficient for data assimilation into Numerical Weather Prediction (NWP) models, long term trends of Earths climate require radiances with stability approaching 10 mK/year, and absolute accuracies better than 100 mK. This investigation uses views of space during roll maneuvers of the Aqua spacecraft to calibrate the mirror emission (one of the largest error sources for AIRS) and reduce the residual errors in cold scenes. We also present results of a secondary study that uses MODIS data to determine the alignment of the AIRS boresight. In this study we match AIRS and MODIS data and iterate on the assumed boresight to find the minimum difference in signal. In this way we are able to confirm the boresight projections determined shortly after launch.
    Keywords: Instrumentation and Photography
    Type: JPL-CL-16-4265 , SPIE Optics and Photonics; Aug 28, 2016 - Sep 01, 2016; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Instrumentation and Photography; Earth Resources and Remote Sensing
    Type: American Geophysical Union (AGU) Fall Meeting 2015; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Atmospheric Infrared Sounder (AIRS) is a space-based instrument that measures the upwelling atmospheric spectrum in the infrared. AIRS is one of several instruments on the EOS-Aqua spacecraft launched on May 4, 2002: Typically, instrument polarization is not a concern in the infrared because the scene is usually not significantly polarized. A small amount of polarization is expected over ocean, which can be seen in the AIRS 3.7 (micro)m window channels. The polarization is seen as a signal difference between two channels with the same center frequency but different polarizations. The observations are compared to a model that relies on measurements of instrument polarization made pre-flight. A first look at a comparison of the observations of sea surface polarization to expectations is presented.
    Keywords: Meteorology and Climatology
    Type: SPIE 49th International Symposium on Optical Science and Technology Annual Meeting; Aug 02, 2004 - Aug 04, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: In an effort to validate the accuracy and stability of AIRS data at low scene temperatures (200-250 K range), we evaluated brightness temperatures at 11 microns with Aqua MODIS band 31 and HIRS/3 channel 8 for Antarctic granules between September 2002 and May 2006. We found excellent agreement with MODIS (at the 0.2 K level) over the full emperature range in data from early in the Aqua mission. However, in more recent data, starting in April 2005, we found a scene temperature dependence in MODIS-AIRS brightness temperature differences, with a discrepancy of 1- 1.5 K at 200 K. The comparison between AIRS and HIRS/3 (channel 8) on NOAA 16 for the same time period yields excellent agreement. The cause and time dependence of the disagreement with MODIS is under evaluation, but the change was coincident with a change in the MODIS production software from collection 4 to 5.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Earth Observing Systems XI; Aug 14, 2006; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...