ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-06-28
    Type: NACA-WR-L-628
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Type: NACA-TN-1649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Type: NACA-WR-L-626 , NACA-MR-L5A18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: An investigation of a 1/7-scale powered model of the Kaiser Fleetwing all-wing airplane was made in the Langley full-scale tunnel to provide data for an estimation of the flying qualities of the airplane. The analysis of the stability and control characteristics of the airplane has been made as closely as possible in accordance with the requirements of the Bureau of Aeronautics, Navy Department's specifications, and a summary of the more significant conclusions is presented as follows. With the normal center of gravity located at 20 percent of the mean aerodynamic chord, the airplane will have adequate static longitudinal stability, elevator fixed, for all flight conditions except for low-power operation at low speeds where the stability will be about neutral. There will not be sufficient down-elevator deflection available for trim above speeds of about 130 miles per hour. It is probable that the reduction in the up-elevator deflections required for trim will be accompanied by reduced elevator hinge moments for low-power operation at low flight speeds. The static directional stability for this airplane will be low for all rudder-fixed or rudder-free flight conditions. The maximum rudder deflection of 30 deg will trim only about 15 deg yaw for most flight conditions and only 10 deg yaw for the condition with low power at low speeds. Also, at low powers and low speeds, it is estimated that the rudders will not trim the total adverse yaw resulting from an abrupt aileron roll using maximum aileron deflection. The airplane will meet the requirements for stability and control for asymmetric power operation with one outboard engine inoperative. The airplane would have no tendency for directional divergence but would probably be spirally unstable, with rudders fixed. The static lateral stability of the airplane will probably be about neutral for the high-speed flight conditions and will be only slightly increased for the low-power operation in low-speed flight. The airplane will not roll against the ailerons in a side-slip maneuver. Although the airplane would probably meet the minimum requirements of pb/2V of 0.07 at all speeds, there will be a loss in rolling ability of the airplane at high aileron deflections and at low flight speeds. It is estimated that the wing stall will be a gradual movement forward from the trailing edge and will be accompanied by no sudden pitching or rolling accelerations. Some stall warning may be indicated by reduction in the elevator and aileron force gradients and by the shaking of the controls caused by unsteady flow over the surfaces near the stall.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...