ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-01-30
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1974-11-01
    Print ISSN: 0002-1962
    Electronic ISSN: 1435-0645
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1975-01-01
    Print ISSN: 0002-1962
    Electronic ISSN: 1435-0645
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: To lower NO(x) emissions from gas-turbine engines the effect of dome design and operational changes on the mixing quality in the fuel-rich region is studied. A statistical analysis is employed to establish the parametric sensitivity in this complex flow. A mixing-effectiveness index is defined and used to optimize the gas-species uniformity and the extent of reaction at the exit plane of the dome. Mixing effectiveness is tied to the fuel and air injection locations, the macroscale structure of the dome aerodynamics, and the level of turbulence. Increases in nozzle/air to fuel ratio, reference velocities, and the dome expansion angle increased the level of turbulence. The optimum configuration featured counter-swirling fuel and air streams and produced a strong torroidal recirculation zone, an effective spray angle of 45 degrees, and azimuthal velocities that decayed to zero inside of two duct diameters. The results underscore the system specific nature of mixing optimization.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 92-3089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.
    Keywords: Life Sciences (General)
    Type: JSC-CN-22375 , 8th Symposium on the Role of the Vestibular Organs in Space Exploration; Apr 08, 2011 - Apr 10, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually decreased following an initial increase after the onset of support surface motion. DISCUSSION: Resu lts confirmed that walking in discordant conditions not only compromises locomotor stability and the ability to multi-task, but comes at a quantifiable metabolic cost. Importantly, like locomotor stability and multi-tasking ability, metabolic expenditure while walking in discordant sensory conditions improved during adaptation. This confirms that sensorimotor adaptability training can benefit multiple performance parameters central to the successful completion of critical mission tasks.
    Keywords: Aerospace Medicine
    Type: JSC-CN-25259 , Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory information. Trained subjects maintained their level of performance over six months.
    Keywords: Behavioral Sciences
    Type: JSC-CN-22150 , 18th IAA Humans in Space Symposium; Apr 11, 2011 - Apr 15, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 9; 5; p. 702-707.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The goal of our current project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation to novel gravitational environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. We have conducted a series of studies that have shown: Training using a combination of modified visual flow and support surface motion during treadmill walking enhances locomotor adaptability to a novel sensorimotor environment. Trained individuals become more proficient at performing multiple competing tasks while walking during adaptation to novel discordant sensorimotor conditions. Trained subjects can retain their increased level of adaptability over a six months period. SA training is effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. The structure of individual training sessions can be optimized to promote fast/strategic motor learning. Training sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that customized training prescriptions can be developed to enhance adaptability. These results indicate that SA training techniques can be added to existing treadmill exercise equipment and procedures to produce a single integrated countermeasure system to improve performance of astro/cosmonauts during prolonged exploratory space missions.
    Keywords: Life Sciences (General)
    Type: JSC-CN-23956 , Major Problems of Space Life Sciences Conference; Oct 20, 2011 - Oct 21, 2011; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...