ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Two major Proterozoic tectonic events are documented in the Taos Range of northern New Mexico. Regional structures involving the tectonic interleaving of c. 1.65 Ga granitoids with supracrustal rocks are interpreted to have formed before 1.42 Ga and probably during collisional assembly of island arc crust into new (1.7–1.6 Ga) continental lithosphere. Supracrustal rocks record 650–750 °C, 6–8 kbar metamorphism (M2); these high temperatures may have been reached during sandwiching between c. 1.65 Ga granitoids. However, the early history has been obscured by renewed tectonism at c. 1.4 Ga that resulted in partial melting, fabric reactivation and new mineral growth at 4 kbar (M3). Metamorphic temperature variations from uppermost-amphibolite to amphibolite facies rocks may be associated with c. 1.65 and/or 1.4 Ga plutonism, but not to a 1.4 Ga extensional shear zone as previously proposed. Syn- and post-1.4 Ga contraction is suggested by high- and low-temperature microstructures showing top-to-the-south-east thrusting. This work reconciles conflicting models by suggesting that the geometry of the structures was mainly established by c. 1.65 Ga, but that the present fabric also records 1.4 Ga tectonism involving high-T  metamorphism and fabric reactivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 21 (2003), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The upper deck of the East Athabasca mylonite triangle (EAmt), northern Saskatchewan, Canada, contains mafic granulites that have undergone high P–T metamorphism at conditions ranging from 1.3 to 1.9 GPa, 890–960 °C. Coronitic textures in these mafic granulites indicate a near-isothermal decompression path to 0.9 GPa, 800 °C. The Godfrey granite occurs to the north adjacent to the upper deck high P–T domain. Well-preserved corona textures in the Godfrey granite constrain igneous crystallization and early metamorphism in the intermediate-pressure granulite field (Opx + Pl) at 1.0 GPa, 775 °C followed by metamorphism in the high pressure granulite field (Grt + Cpx + Pl) at 1.2 GPa, 860 °C. U–Pb geochronology of zircon in upper deck mafic granulite yields evidence for events at both c. 2.5 Ga and c. 1.9 Ga. The oldest zircon dates are interpreted to constrain a minimum age for crystallization or early metamorphism of the protolith. A population of 1.9 Ga zircon in one mafic granulite is interpreted to constrain the timing of high P–T metamorphism. Titanite from the mafic granulites yields dates ranging from 1900 to 1894 Ma, and is interpreted to have grown along the decompression path, but still above its closure temperature, indicating cooling following the high P–T metamorphism from c. 960–650 °C in 4–10 Myr. Zircon dates from the Godfrey granite indicate a minimum crystallization age of 2.61 Ga, without any evidence for 1.9 Ga overgrowths. The data indicate that an early granulite facies event occurred at c. 2.55–2.52 Ga in the lower crust (c. 1.0 GPa), but at 1.9 Ga the upper deck underwent high P–T metamorphism, then decompressed to 0.9–1.0 GPa. Juxtaposition of the upper deck and Godfrey granite would have occurred after or been related to this decompression. In this model, the high P–T rocks are exhumed quickly following the high pressure metamorphism. This type of metamorphism is typically associated with collisional orogenesis, which has important implications for the Snowbird tectonic zone as a fundamental boundary in the Canadian Shield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Quantitative thermobarometry in pelites and garnet amphibolites from the Bitterroot metamorphic core complex, combined with U–Pb dating of metamorphic monazite and zircon from footwall rocks, provide new constraints on the P–T –t evolution of footwall rocks. The thermobarometric and geochronological results, when correlated with observations from other regions bordering the Bitterroot batholith, define a regional metamorphic history for the northern margin of the Bitterroot batholith consisting of three distinct events beginning with early prograde metamorphism (M1) coincident with arc-related magmatism and crustal shortening at c. 100–80 Ma. Magmatism and crustal thickening led to regional upper-amphibolite facies metamorphism (M2) and anatectic melting between 64 and 56 Ma. Mineral textures related to high-temperature isothermal decompression (M3), coincident with late stages of magmatism in the Bitterroot complex footwall (56–48 Ma), are only preserved in areas adjacent to extensional structures. The close temporal relationship between peak metamorphism and the onset of footwall decompression indicates that thermal weakening was an important factor in the initiation of Early Eocene regional extension and tectonic denudation of the Bitterroot complex and possibly the Boehls Butte metamorphic terrane. The morphology of the decompressional P–T –t path derived for Bitterroot footwall rocks is similar to other trajectories reported for Cordilleran core complexes and may represent a transition in the deformational style of core-bunding detachments responsible for exhumation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-08-03
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-01-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-05-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-23
    Description: The rates at which large volumes of eruptible, silicic (〉65 wt% SiO 2 ) magma (magma chambers) are assembled, as well as their longevity in the upper crust, remain controversial. This controversy is due, in part, to a missing record of granitoid plutonic complexes that represent large fossil upper crustal magma chambers. We present new geologic mapping and high-precision U-Pb zircon geochronology from the Eocene Golden Horn batholith in Washington State, USA. These data reveal that the batholith was constructed as a series of sills over 739 ± 34 k.y. Topographic relief of 〉2 km permits volume estimates for 4 of the sills, the largest of which, a 〉424 km 3 rapakivi granite, was emplaced over 26 ± 25 k.y. at a rate of ~0.0125 km 3 /yr. This rate exceeds those needed to build large, silicic magma chambers in thermal models, and we suggest that that this unit may represent the first fossil magma chamber of this type recognized in the geologic record.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-20
    Description: Astronomically tuned cyclic sedimentary successions provide unprecedented insight into the temporal evolution of depositional systems and major geologic events. However, placing astronomically calibrated records into an absolute time frame with confidence requires independent and precise geochronologic constraints. Astronomical tuning of the precessionally modulated sedimentary cycles of the Mediterranean Basin deposited during the Messinian Salinity Crisis (5.96–5.33 Ma) has indicated an ~90 k.y. "Messinian gap", corresponding to the evaporative drawdown of the Mediterranean following the closure of the Mediterranean-Atlantic gateway. In the Messinian deposits, a volcanic ash dated by 40 Ar/ 39 Ar geochronology was used to anchor the sedimentary cycles to the insolation curve. However, the uncertainty of the 40 Ar/ 39 Ar date introduces a potential two-cycle (~40 k.y.) uncertainty in the tuning. Using high-precision chemical abrasion–thermal ionization mass spectrometry (CA-TIMS) U-Pb geochronology on single zircon grains from two Messinian ash layers in Italy, we obtained dates of 5.5320 ± 0.0046 Ma and 5.5320 ± 0.0074 Ma with sub-precessional resolution. Combined with our astronomical tuning of the Messinian Lower Evaporites, the results refine the duration of the "Messinian gap" to at most 28 or 58 ± 9.6 k.y., which correlates with either the TG12 glacial interval alone, or both TG12 and TG14 glacial intervals, supporting the hypothesis of a glacio-eustatic contribution in fully isolating the Mediterranean from the Atlantic Ocean. Our new U-Pb dates also allow us to infer a precessionally modulated cyclicity for the post-evaporitic deposits, and hence enable us to tune those successions to the insolation curve.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-02-20
    Description: Therapsid and other tetrapod fossils from the South African Karoo Supergroup provide the most detailed and best studied terrestrial vertebrate record of the Middle and Late Permian. The resulting biostratigraphic scheme has global applicability. Establishing a temporal framework for these faunas has proven difficult: magnetostratigraphy has been hampered by a Jurassic overprint, and intercorrelation with Permian marine sequences has been equivocal. Here we report U-Pb zircon isotope dilution–thermal ionization mass spectrometry (ID-TIMS) dates for five volcanic ashes interbedded with fossils from the Pristerognathus , Tropidostoma , and Cistecephalus vertebrate biozones of the Beaufort Group. This temporal framework allows correlation to marine zonations and improves understanding of rates of faunal evolution and patterns of basin evolution. Our results identify no correlative vertebrate extinctions in the Karoo Supergroup to the marine end-Guadalupian mass extinction and raise the question of whether there is any record of a terrestrial extinction related to the Emeishan large igneous province.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-01
    Description: The presence of early Eocene near-trench magmatism in western Washington and southern British Columbia has led to speculation that this area experienced ridge-trench interaction during that time. However, the effects of this process as they are preserved in other parts of the geologic record are poorly known. We present high-precision U-Pb zircon geochronology from Paleogene nonmarine sedimentary and volcanic sequences in central and western Washington that preserve a record of tectonic events between ca. 60 and 45 Ma. The data reveal that the Swauk, Chuckanut, and Manastash Formations formed a nonmarine sedimentary basin along the North American margin between ≤59.9 and 51.3 Ma. This basin experienced significant disruption that culminated in basinwide deformation, uplift, and partial erosion during accretion of the Siletzia terrane between 51.3 and 49.9 Ma. Immediately following accretion, dextral strike-slip faulting began, or accelerated, on the Darrington–Devil’s Mountain, Entiat, Leavenworth, Eagle Creek, and Straight Creek–Fraser fault zones between 50 and 46 Ma. During this time, the Chumstick Formation was deposited in a strike-slip basin coeval with near-trench magmatism. Faulting continued on the Entiat, Eagle Creek, and Leavenworth faults until a regional sedimentary basin was reestablished ≤45.9 Ma, and may have continued on the Straight Creek–Fraser fault until 35–30 Ma. This record of basin disruption, volcanism, and strike-slip faulting is consistent with ridge-trench interaction and supports the presence of an oceanic spreading ridge at this latitude along the North American margin during the early Eocene.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...