ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Dordrecht [u.a.] : Springer
    Call number: PIK N 456-11-0148
    Description / Table of Contents: Contents: 1. SCIAMACHY - The Need for Atmospheric Research from Space ; 2. ENVISAT - SCIAMACHY's Host ; 3. The Instrument ; 4. Instrument Operations ; 5. Calibration and Monitoring ; 6. SCIAMACHY In-Orbit Operations and Performance ; 7. From Radiation Fields to Atmospheric Concentrations - Retrieval of Geophysical Parameters ; 8. Data Processing and Products ; 9. Validation ; 10. SCIAMACHY's View of the Changing Earth's Environment
    Type of Medium: Monograph available for loan
    Pages: XVI, 225 S. : zahlr. Ill. (farbig), Tab., Kt., graph. Darst.
    ISBN: 9789048198955
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-03
    Description: The switch from the use of coal to natural gas or oil for energy generation potentially reduces greenhouse gas emissions and thus the impact on global warming and climate change because of the higher energy creation per CO2 molecule emitted. However, the climate benefit over coal is offset by methane (CH4) leakage from natural gas and petroleum systems, which reverses the climate impact mitigation if the rate of fugitive emissions exceeds the compensation point at which the global warming resulting from the leakage and the benefit from the reduction of coal combustion coincide. Consequently, an accurate quantification of CH4 emissions from the oil and gas industry is essential to evaluate the suitability of natural gas and petroleum as bridging fuels on the way to a carbon-neutral future. We show that regional CH4 release from large oil and gas fields can be monitored from space by using dense daily recurrent measurements of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite to quantify emissions and leakage rates. The average emissions for the time period 2018/2019 from the five most productive basins in the United States, the Permian, Appalachian, Eagle Ford, Bakken, and Anadarko, are estimated to be 3.18±1.13, 2.36±0.88, 1.37±0.63, 0.89±0.56, and 2.74±0.74 Mt yr−1, respectively. This corresponds to CH4 leakage rates relative to the associated production between 1.2 % and 1.4 % for the first four production regions, which are consistent with bottom-up estimates and likely fall below the break-even leakage rate for immediate climate benefit. For the Anadarko Basin, the fugitive emission rate is larger and amounts to 3.9±1.1 %, which likely exceeds the break-even rate for immediate benefit and roughly corresponds to the break-even rate for a 20-year time horizon. The determined values are smaller than previously derived satellite-based leakage rates for the time period 2009–2011, which was an early phase of hydraulic fracturing, indicating that it is possible to improve the climate footprint of the oil and gas industry by adopting new technologies and that efforts to reduce methane emissions have been successful. For two of the world's largest natural gas fields, Galkynysh and Dauletabad in Turkmenistan, we find collective methane emissions of 3.26±1.17 Mt yr−1, which corresponds to a leakage rate of 4.1±1.5 %, suggesting that the Turkmen energy industry is not employing methane emission avoidance strategies and technologies as successfully as those currently widely used in the United States. The leakage rates in Turkmenistan and in the Anadarko Basin indicate that there is potential to reduce fugitive methane emissions from natural gas and petroleum systems worldwide. In particular, relatively newly developed oil and gas plays appear to have larger leakage rates compared to more mature production areas.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-22
    Description: The Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument on Envisat provided, between August 2002 and April 2012, measurements of solar and Earthshine spectra from the UV to the shortwave infrared spectral region in multiple viewing geometries. We present a new approach to derive stratospheric aerosol extinction profiles from SCIAMACHY solar occultation measurements based on an onion-peeling method similar to the onion-peeling differential optical absorption spectroscopy (DOAS) retrieval, which has already been successfully used for the derivation of greenhouse gas profiles. Since the retrieval of aerosol extinction requires as input measured transmissions in absolute units, an improved radiometric calibration of the SCIAMACHY solar occultation measurements has been developed, which considers various instrumental and atmospheric effects specific to solar occultation. The aerosol extinction retrieval can in principle be applied to all wavelengths measured by SCIAMACHY. As a first application, we show results for 452, 525 and 750 nm. The SCIAMACHY solar occultation time series has been processed, covering a latitudinal range of about 50–70∘ N. Reasonable aerosol extinctions are derived between about 15 and 30 km with typically larger uncertainties at higher altitudes due to decreasing aerosol extinction. Comparisons with collocated Stratospheric Aerosol and Gas Experiment II (SAGE-II) and SCIAMACHY limb aerosol data products revealed good agreement with essentially no mean bias. However, dependent on altitude, differences of up to ±20 %–30% to SAGE-II at 452 and 525 nm are observed. Similar results are obtained from comparisons with SAGE-III. SCIAMACHY solar occultation data at 750 nm have been compared with corresponding SAGE-III, Optical Spectrograph and InfraRed Imager System (OSIRIS) and SCIAMACHY limb results. The agreement with SCIAMACHY limb data at 750 nm is within 5 %–20 % between 17 and 27 km. SAGE-III and OSIRIS show at this wavelength and altitude range on average about 40 % and 25 % smaller values, with some additional 10 %–20 % modulation with altitude. The altitude variations in the differences are mainly caused by systematic vertical oscillations in the SCIAMACHY occultation data of up to 30 % below about 25 km. These oscillations decrease to amplitudes below 10 % with increasing number of collocations and are no longer visible in monthly anomalies. Major volcanic eruptions as well as occurrences of polar stratospheric clouds (PSCs) can be identified in the time series of aerosol extinction data and related anomalies. The influence of the quasi-biennial oscillation (QBO) is visible above 25 km.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-19
    Description: Carbon monoxide (CO) is an important atmospheric constituent affecting air quality, and methane (CH4) is the second most important greenhouse gas contributing to human-induced climate change. Detailed and continuous observations of these gases are necessary to better assess their impact on climate and atmospheric pollution. While surface and airborne measurements are able to accurately determine atmospheric abundances on local scales, global coverage can only be achieved using satellite instruments. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, which was successfully launched in October 2017, is a spaceborne nadir-viewing imaging spectrometer measuring solar radiation reflected by the Earth in a push-broom configuration. It has a wide swath on the terrestrial surface and covers wavelength bands between the ultraviolet (UV) and the shortwave infrared (SWIR), combining a high spatial resolution with daily global coverage. These characteristics enable the determination of both gases with an unprecedented level of detail on a global scale, introducing new areas of application. Abundances of the atmospheric column-averaged dry air mole fractions XCO and XCH4 are simultaneously retrieved from TROPOMI's radiance measurements in the 2.3 µm spectral range of the SWIR part of the solar spectrum using the scientific retrieval algorithm Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS). This algorithm is intended to be used with the operational algorithms for mutual verification and to provide new geophysical insights. We introduce the algorithm in detail, including expected error characteristics based on synthetic data, a machine-learning-based quality filter, and a shallow learning calibration procedure applied in the post-processing of the XCH4 data. The quality of the results based on real TROPOMI data is assessed by validation with ground-based Fourier transform spectrometer (FTS) measurements providing realistic error estimates of the satellite data: the XCO data set is characterised by a random error of 5.1 ppb (5.8 %) and a systematic error of 1.9 ppb (2.1 %); the XCH4 data set exhibits a random error of 14.0 ppb (0.8 %) and a systematic error of 4.3 ppb (0.2 %). The natural XCO and XCH4 variations are well-captured by the satellite retrievals, which is demonstrated by a high correlation with the validation data (R=0.97 for XCO and R=0.91 for XCH4 based on daily averages). We also present selected results from the mission start until the end of 2018, including a first comparison to the operational products and examples of the detection of emission sources in a single satellite overpass, such as CO emissions from the steel industry and CH4 emissions from the energy sector, which potentially allows for the advance of emission monitoring and air quality assessments to an entirely new level.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2018-02-07
    Description: Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-07-05
    Description: The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on Envisat (2002–2012) performed nadir, limb, solar/lunar occultation and various monitoring measurements. The pointing information of the instrument is determined by the attitude information of the Envisat platform with its star trackers together with the encoder readouts of both the azimuth and the elevation scanner of SCIAMACHY. In this work, we present additional sources of attitude information from the SCIAMACHY measurements itself. The basic principle is the same as used by the star tracker: we measure the viewing direction towards celestial objects, i.e. sun and moon, to detect possible mispointings. In sun over limb port observations, we utilise the vertical scans over the solar disk. In horizontal direction, SCIAMACHY's sun follower device (SFD) is used to adjust the viewing direction. Moon over limb port measurements use for both the vertical and the horizontal direction the adjustment by the SFD. The viewing direction is steered towards the intensity centroid of the illuminated part of the lunar disk. We use reference images from the USGS Robotic Lunar Observatory (ROLO) to take into account the inhomogeneous surface and the variations by lunar libration and phase to parameterise the location of the intensity centroid from the observation geometry. Solar observations through SCIAMACHY's so-called sub-solar port (with a viewing direction closely to zenith) also use the SFD in the vertical direction. In the horizontal direction the geometry of the port defines the viewing direction. Using these three type of measurements, we fit improved mispointing parameters by minimising the pointing offsets in elevation and azimuth. The geolocation of all retrieved products will benefit from this; the tangent heights are especially improved. The altitudes assigned to SCIAMACHY's solar occultation measurements are changed in the range of −130 to −330 m, the lunar occultation measurements are changed in the range of 0 to +130 m and the limb measurements are changed in the range of −50 to +60 m (depending on season, altitude and azimuth angle). The horizontal location of the tangent point is changed by about 5 km for all measurements. These updates are implemented in version 9 of the SCIAMACHY Level 1b products and Level 2 version 7 (based on L1b version 9).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-09-20
    Description: Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4). As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment) in late summer 2014 in the Los Angeles (LA) Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP) instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2) from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11.6 and 17.8 kt CH4 yr−1 with related uncertainties in the range of 14 to 45 %. The comparison of the remote sensing and in situ based CH4 emission rate estimates reveals good agreement within the error bars with an average of the absolute differences of around 2.4 kt CH4 yr−1 (±2. 8 kt CH4 yr−1). The US Environmental Protection Agency (EPA) reported inventory value is 11.5 kt CH4 yr−1 for 2014, on average 2.8 kt CH4 yr−1 (±1. 6 kt CH4 yr−1) lower than our estimates acquired in the afternoon in late summer 2014. This difference may in part be explained by a possible leak located on the southwestern slope of the landfill, which we identified in the observations of the Airborne Visible/Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) instrument, flown contemporaneously aboard a second aircraft on 1 day.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-09
    Description: Methane is an important atmospheric greenhouse gas and an adequate understanding of its emission sources is needed for climate change assessments, predictions, and the development and verification of emission mitigation strategies. Satellite retrievals of near-surface-sensitive column-averaged dry-air mole fractions of atmospheric methane, i.e. XCH4, can be used to quantify methane emissions. Maps of time-averaged satellite-derived XCH4 show regionally elevated methane over several methane source regions. In order to obtain methane emissions of these source regions we use a simple and fast data-driven method to estimate annual methane emissions and corresponding 1σ uncertainties directly from maps of annually averaged satellite XCH4. From theoretical considerations we expect that our method tends to underestimate emissions. When applying our method to high-resolution atmospheric methane simulations, we typically find agreement within the uncertainty range of our method (often 100 %) but also find that our method tends to underestimate emissions by typically about 40 %. To what extent these findings are model dependent needs to be assessed. We apply our method to an ensemble of satellite XCH4 data products consisting of two products from SCIAMACHY/ENVISAT and two products from TANSO-FTS/GOSAT covering the time period 2003–2014. We obtain annual emissions of four source areas: Four Corners in the south-western USA, the southern part of Central Valley, California, Azerbaijan, and Turkmenistan. We find that our estimated emissions are in good agreement with independently derived estimates for Four Corners and Azerbaijan. For the Central Valley and Turkmenistan our estimated annual emissions are higher compared to the EDGAR v4.2 anthropogenic emission inventory. For Turkmenistan we find on average about 50 % higher emissions with our annual emission uncertainty estimates overlapping with the EDGAR emissions. For the region around Bakersfield in the Central Valley we find a factor of 5–8 higher emissions compared to EDGAR, albeit with large uncertainty. Major methane emission sources in this region are oil/gas and livestock. Our findings corroborate recently published studies based on aircraft and satellite measurements and new bottom-up estimates reporting significantly underestimated methane emissions of oil/gas and/or livestock in this area in EDGAR.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-15
    Description: This paper describes the in-flight calibration of the polarization response of the SCIAMACHY polarization measurement devices (PMDs) and a selected region of its science channels. With the lack of polarized calibration sources it is not possible to obtain such a calibration from dedicated calibration measurements. Instead, the earthshine itself, together with a simplified radiative transfer model (RTM), is used to derive time-dependent and measurement-configuration-dependent polarization sensitivities. The results are compared to an instrument model that describes the degradation of the instrument as a result of a slow buildup of contaminant layers on its elevation and azimuth scan mirrors. This comparison reveals significant differences between the model prediction and the data, suggesting an unforeseen change between on-ground and in-flight calibration in at least one of the polarization-sensitive components of the optical bench. The possibility of mechanisms other than scan mirror contamination contributing to the degradation of the instrument will be discussed. The data are consistent with a polarization phase shift occurring in the beam split prism used to divert the light coming from the telescope to the different channels and polarization measurement devices. The extension of the instrument degradation model with a linear retarder enables the determination of the relevant parameters to describe this phase shift and ultimately results in a significant improvement of the polarization measurements as well as the polarization response correction of measured radiances.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...