ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2017-07-18
    Description: The structural framework and evolution from the Middle Jurassic to the present of the Mississippi Canyon, Atwater Valley, western DeSoto Canyon, and western Lloyd Ridge protraction areas consist of a complex history influenced by basement fabric, multiple stages of salt movement, and gravitational gliding. A detailed tectono-stratigraphic interpretation of the study area indicates that three main stages of salt movement controlled sediment dispersal patterns and the formation and evolution of intraslope minibasins. These three stages of salt movement occurred during the Cretaceous, the Paleogene, and the Neogene. Basement structures were the primary control on initial salt kinematics, affecting gravity-driven slope deformation and resulting in a wide variety of structural styles. Basement (acoustic basement) structures (horsts, grabens, and half grabens) formed prior to the deposition of the Middle Jurassic autochthonous Louann Salt. These features are interpreted to have controlled the original thickness of the autochthonous salt layer and subsequent salt-withdrawal patterns. Mesozoic structures, such as extensional-compressional gliding systems and expulsion rollovers, formed above the autochthonous salt. Three levels of allochthonous salt systems are identified: (1) approximate top Barremian, (2) top Cretaceous, and (3) intra-Neogene (between 10 and 4 Ma). Early emplacement of two allochthonous salt layers is present in the northeastern part of the study area, whereas the Neogene allochthonous salt system extends throughout the Mississippi Canyon, western DeSoto Canyon, and northern Atwater Valley protraction areas. Salt from the autochthonous and two deep allochthonous salt layers was expelled vertically and basinward during the Neogene, feeding the younger allochthonous salt systems. The autochthonous and deep allochthonous salt layers were detachments for many of the large Neogene extensional (growth faults and turtles) and contractional (anticlines and thrust faults) structures, whereas the Neogene allochthonous salt system accommodated suprasalt minibasins associated with counterregional and roho salt systems. These three allochthonous salt layers were successively loaded by gravity-flow sediments, resulting in deep (above autochthonous or deep allochthonous salt layers) and shallow (supra-Neogene allochthonous salt) minibasin formations and local development of extensive salt welds. Northwest–southeast-oriented strike-slip structures, active during the Neogene, are present in the salt province within the study area. They are related to basinwide heterogeneities in the salt distribution and are controlled by differential basinward movement of adjacent suprasalt minibasins.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-18
    Description: The petroleum geology of the Mississippi Canyon, Atwater Valley, western DeSoto Canyon, and western Lloyd Ridge protraction areas, offshore northern Gulf of Mexico, is controlled by the interaction of salt tectonics and high sedimentation rate during the Neogene and resulted in a complex distribution of reservoirs and traps. We evaluate 87 fields and discoveries: 51 with combined structural/stratigraphic traps (three-way closures), 19 with structural traps (four-way closures), and 17 with stratigraphic traps. Three of these discoveries are in Upper Jurassic eolian reservoirs; the remaining discoveries are in Neogene deep-water reservoirs. The tectono-stratigraphic evolution of the area is analyzed at 11 discrete intervals between 24 Ma and the present. Four stratigraphic external forms—troughs, bowls, wedges, and sheets—are integrated with the structural geology to understand the changing shape of subbasins and minibasins, primarily in a slope setting. This analysis shows how the allochthonous salt systems evolved over time and how salt movement affected sedimentation patterns and subbasin evolution. The study area includes some of the largest fields in the northern deep-water Gulf of Mexico, such as the Thunder Horse field, which produces from an anticlinal (turtle) structure, or the Mars–Ursa and associated fields with greater than 1.5 billion BOE estimated ultimate recovery, which developed with a counterregional allochthonous salt system. The remaining fields have considerably smaller reserves, which are controlled by the area within closure and the number of reservoir intervals. Most of fields in the study area are contained within sheet-shaped or wedge-shaped stratigraphic external forms and have four-way or three-way trapping configurations. These findings indicate the profound effect of mobile salt on the petroleum geology of the region.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...