ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism 98 (1965), S. 47-52 
    ISSN: 0005-2760
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography A 90 (1974), S. 113-118 
    ISSN: 0021-9673
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mineralogy and petrology 54 (1995), S. 55-69 
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung Feine Schichtung in magmatischen Intrusionen zeigt Parallelen mit experimentell erzeugter Bänderung, wie sie in kristallisierenden Salzlösungen beobachtet werden kann. An solchen Lösungen haben jüngste Arbeiten gezeigt, daß Kristall-Alterung bei der Ausbildung einer Bänderung eine wichtige Rolle spielt. Diese Experimente reproduzieren ebenso wie numerische Modelle, die die Ausbildung einer feinen Schichtung während der Kristall-Alterung simulieren, Merkmale, die in feinen Schichten auftreten, über nicht leicht mit periodischer Keimbildung und Kristallwachstumsmodellen erklärt werden können. Diese Merkmale umfassen das Phänomen der “verlorenen Segmente”, bei dem die Ausbildung einer Lage in der Weise umgekehrt werden kann, daß die Lage mit der Zeit verschwindet, ohne dabei den Gesamtabstand der später gebildeten Schichten zu beeinflussen, oder die Ausbildung von „Lagenpaaren”. Diese erfolgt, wenn Kristalle an den Rändern der sich entwickelnden Lagen bevorzugt auf Kosten jener im Zentrum wachsen. Während diese Ergebnisse nahelegen, daß Kristall-Alterung bei der Ausbildung von feiner Schichtung der vorherrschende Prozeß ist, kann Kristall-Alterung auch die texturellen und modalen Eigenschaften einer magmatischen Schichtung verstärken, die durch eine Reihe anderer Prozesse wie Kristallsetzung, Keimbildung oder Wachstum eingeleitet wurden.
    Notes: Summary Fine-scale layering in igneous intrusions shows parallels with experimentally produced banding observed in crystallizing salt solutions in which recent advances have demonstrated the importance of crystal aging on the development of banding. These experiments, as well as numerical models of fine-scale layering development during crystal aging, reproduce features observed in fine scale layering that are not readily explained by periodic nucleation and crystal growth models. These include the phenomenon of “lost segments”, in which the development of a layer may be reversed such that the layer disappears over time but does so without affecting the overall spacing of later-developing layers, and the development of “doublet” layers, which results when crystals at the margins of developing layers preferentially grow at the expense of those in the center. While these results suggest that crystal aging is the dominant process in the development of fine-scale layering, crystal aging may enhance the textural and modal features of igneous layering initiated by a variety of other crystal settling, nucleation or growth processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 122 (1995), S. 289-300 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Apatite from the Great Dyke of Zimbabwe is relatively rich in the hydroxy-fluorapatite end-members. The mole fraction of fluorapatite increases from approximately 40% in cumulates of the Ultramafic Sequence to over 60% in a sample near the top of the exposed Mafic Sequence. The chlorapatite component decreases from a typical high of 10–20 mole% in the Ultramafic Sequence to about 1% in the uppermost part of the Mafic sequence. However, within-sample variation may be as great as the entire stratigraphic variation. Halogen contents of marginal samples generally are similar to axial samples, but tend not to have as high Cl concentration and tend to OH-enrichment. Biotite compositions approach hydroxyl end-member compositions, and apatite-biotite OH-F exchange geothermometers give an average closure temperature of 564° C. Apatite from the Umvimeela Dyke, an unlayered dike that parallels the Great Dyke over much of its length, contains less Cl than is seen in the Ultramafic Sequence cumulates of the Great Dyke. While the overall stratigraphic trend is characterized by a decrease in the Cl/F ratio with stratigraphic height, within the P1 unit at the top of the Ultramafic Sequence there is a positive correlation between Cl and other incompatible elements such as Na and Ce. The apparent contradiction between the general stratigraphic trend of decreasing Cl/F ratio with fractionation and the apparent increase in Cl and other incompatible elements seen in the P1 unit can be explained by assuming that the Great Dyke magma chamber was degassing near its top, where confining pressure was lowest and Cl was preferentially lost to a separating volatile-rich fluid. As cumulates formed on the floor, they entrapped liquid that was increasingly depleted in Cl at the higher stratigraphic levels. However, at any given stratigraphic interval, either local fluid enrichment or the eventual crystallization of halogen-bearing minerals that incorporate the smaller F ion in preference to the larger Cl ion led to a local increase in the Cl/F ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 102 (1989), S. 138-153 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Variations in the F, Cl and OH contents of apatite are not constrained by crystal-chemical factors (in contrast to micas and amphiboles), and thus changes in the abundance of these components provide an indicator of halogen fugacity variations and insights into the degassing history of igneous rocks. Microprobe analysis of intercumulus apatites from the Stillwater Complex reveal that Cl-rich apatites, typically containing 〈0.4 wt % F and 〉6.0 wt % Cl, occur throughout the lower 1/3 of the complex excluding the Basal series. A change from Cl-rich to more F-rich apatite occurs within olivine-bearing zone I (OB I) of the Banded series, the host zone of the platiniferous J-M Reef. Although apatite compositions are somewhat variable above the J-M Reef, more F-rich apatites predominante and typically contain 〉1.2 wt % F and 〈3.0 wt % Cl. The most F-rich apatites occur in the uppermost exposed cumulates. Pristine apatites from coeval sills and dikes from below the complex and from the Basal series are similarly F-rich. In all apatites, the Cl and F contents are lower in rocks affected by later metamorphic fluids. Rare earth element (REE) concentrations in chlorapatites show a marked peak in the olivine-rich rocks of the J-M Reef, and contain up to 2 wt % Ce2O3 + La2O3. The trend of first increasing, then decreasing Cl/F ratios with stratigraphic height is modeled by a vapor-driven zone refining process occurring within the cumulate pile causing Cl-enrichment in the interstitial melt accompanied by degassing at the top of the magma chamber causing overall loss of Cl from the magma as crystallization proceeded. The abrupt change from Cl-rich to more F-rich apatites within OB I is interpreted as the result of a breakdown of the Cl-rich zone refining front and mixing with Cl-poor supernatant melt. Any high temperature fluids that exsolved and circulated through the lower 1/3 of the complex must have been enriched in Cl and could have transported REE and trace metals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The major platinum-group elements (PGE) concentrations in layered intrusions are typically associated with zones in which the sulfide abundance begins to increase. In a number of layered intrusions, there is also a distinct stratigraphic separation in the peak concentrations of the PGE from those of the base metals, gold and sulfur through these zones. These stratigraphic “offsets” are characterized by a lower, typically S-poor, Pt- and Pd-enriched zone overlain by a zone enriched in the base metals, S and Au. The separations amount to a few decimeters to several tens of meters. In some instances, the high Pt and Pd concentrations are associated with trivial amounts of sulfide. Theoretical considerations suggest that these offsets can be modeled as chromatographic peaks that develop during an infiltration/reaction process. Using Pd as a typical PGE and Cu as a typical base metal, a numeric model is developed that illustrates how metal separations can develop in a vapor-refining zone as fluid evolved during solidification of a cumulus pile leaches sulfide and redeposits it higher in the crystal pile. The solidification/degassing ore-element transport is coupled with a compaction model for the crystal pile. Solidification resulting from conductive cooling through the base of the compacting column leads to an increasing volatile concentration in the intercumulus liquid until it reaches fluid saturation. Separation and upward migration of this fluid lead to an upward-migrating zone of increasingly higher bulk water contents as water degassed from underlying cumulates enriches overlying, fluid-undersaturated interstitial liquids. Sulfide is resorbed from the degassing regions and is reprecipitated in these vapor-undersaturated interstitial liquids, producing a zone of relatively high modal sulfide that also migrates upward with time. Owing to its strong preference for sulfide, Pd is not significantly mobile until all sulfide is resorbed. The result is a zone of increasing PGE enrichment that follows the sulfide resorption front as solidification/degassing continues. In detail, the highest Pd concentrations occur stratigraphically below the peak in S and base metals. The high Pd/S ratio mimics values conventionally interpreted as the result of high (silicate liquid)/(sulfide liquid) mass ratios (“R” values). However, in this case, the high Pd/S ratio is the result of a chromatographic/reaction front enrichment and not a magmatic sulfide-saturation event.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2013-09-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-01-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...