ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-01
    Description: Tropospheric ozone is an important greenhouse gas, is detrimental to human health and crop and ecosystem productivity, and controls the oxidizing capacity of the troposphere. Because of its high spatial and temporal variability and limited observations, quantifying net tropospheric ozone changes across the Northern Hemisphere on time scales of two decades had not been possible. Here, we show, using newly available observations from an extensive commercial aircraft monitoring network, that tropospheric ozone has increased above 11 regions of the Northern Hemisphere since the mid-1990s, consistent with the OMI/MLS satellite product. The net result of shifting anthropogenic ozone precursor emissions has led to an increase of ozone and its radiative forcing above all 11 study regions of the Northern Hemisphere, despite NOx emission reductions at midlatitudes.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-06
    Description: This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of the In-service Aircraft for a Global Observing System (IAGOS). Considering the high interannual variability of biomass burning emissions and the episodic nature of long-range pollution transport, one strength of this study is the amount of data taken into account, namely 30 000 vertical profiles at nine clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002–2017. As a preliminary, a brief overview of the spatiotemporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). This study focuses on the free troposphere (altitudes above 2 km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110–150 (48) ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25 % strongest CO anomalies appear reasonably well distributed throughout the year, in contrast to the 5 % or 1 % strongest anomalies that exhibit a strong seasonality with, for instance, more frequent anomalies during summertime in the northern United States, during winter/spring in Japan, during spring in south-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall in Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO (SOft attribution using FlexparT and carbon monoxide emission inventories for In-situ Observation database) v1.0 IAGOS added-value products that consist of FLEXible PARTicle dispersion model (FLEXPART) 20-day backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic Monitoring Atmospheric Composition and Climate (MACC)/CityZEN EU projects (MACCity) and biomass burning Global Fire Assimilation System (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during the summer season. In both Japan and south India, the anthropogenic emissions dominate all throughout the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in Southern Hemisphere Africa and South America. To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-06
    Description: This paper investigates in an innovative way the climatological vertical stratification of relative humidity (RH), ozone (O3) and carbon monoxide (CO) mixing ratios within the planetary boundary layer (PBL) and at the interface with the free troposphere (FT). The climatology includes all vertical profiles available at northern mid-latitudes over the period 1994–2016 in both the IAGOS (In-service Aircraft for a Global Observing System) and WOUDC (World Ozone and Ultraviolet Radiation Data Centre) databases, which represents more than 90 000 vertical profiles. For all individual profiles, apart from the specific case of surface-based temperature inversions (SBIs), the PBL height is estimated following the elevated temperature inversion (EI) method. Several features of both SBIs and EIs are analysed, including their diurnal and seasonal variations. Based on these PBL height estimates (denoted h), the novel approach introduced in this paper consists of building a so-called PBL-referenced vertical distribution of O3, CO and RH by averaging all individual profiles beforehand expressed as a function of z∕h rather than z (with z the altitude). Using this vertical coordinate system allows us to highlight the features existing at the PBL–FT interface that would have been smoothed otherwise. Results demonstrate that the frequently assumed well-mixed PBL remains an exception for both chemical species. Within the PBL, CO profiles are characterized by a mean vertical stratification (here defined as the standard deviation of the CO profile between the surface and the PBL top, normalized by the mean) of 11 %, with moderate seasonal and diurnal variations. A higher vertical stratification is observed for O3 mixing ratios (18 %), with stronger seasonal and diurnal variability (from ∼ 10 % in spring–summer midday–afternoon to ∼ 25 % in winter–fall night). This vertical stratification is distributed heterogeneously in the PBL with stronger vertical gradients observed at both the surface (due to dry deposition and titration by NO for O3 and due to surface emissions for CO) and the PBL–FT interface. These gradients vary with the season from the lowest values in summer to the highest ones in winter. In contrast to CO, the O3 vertical stratification was found to vary with the surface potential temperature following an interesting bell shape with the weakest stratification for both the lowest (typically negative) and highest temperatures, which could be due to much lower O3 dry deposition in the presence of snow. Therefore, results demonstrate that EIs act as a geophysical interface separating air masses of distinct chemical composition and/or chemical regime. This is further supported by the analysis of the correlation of O3 and CO mixing ratios between the different altitude levels in the PBL and FT (the so-called vertical autocorrelation). Results indeed highlight lower correlations apart from the PBL–FT interface and higher correlations within each of the two atmospheric compartments (PBL and FT). The mean climatological O3 and CO PBL-referenced profiles analysed in this study are freely available on the IAGOS portal for all seasons and times of day (https://doi.org/10.25326/4).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-20
    Description: In situ measurements in the upper troposphere–lower stratosphere (UTLS) have been performed in the framework of the European research infrastructure IAGOS (In-service Aircraft for a Global Observing System) for ozone since 1994 and for carbon monoxide (CO) since 2002. The flight tracks cover a wide range of longitudes in the northern extratropics, extending from the North American western coast (125° W) to the eastern Asian coast (135° E) and more recently over the northern Pacific Ocean. Several tropical regions are also sampled frequently, such as the Brazilian coast, central and southern Africa, southeastern Asia, and the western half of the Maritime Continent. As a result, a new set of climatologies for O3 (August 1994–December 2013) and CO (December 2001–December 2013) in the upper troposphere (UT), tropopause layer, and lower stratosphere (LS) are made available, including gridded horizontal distributions on a semi-global scale and seasonal cycles over eight well-sampled regions of interest in the northern extratropics. The seasonal cycles generally show a summertime maximum in O3 and a springtime maximum in CO in the UT, in contrast to the systematic springtime maximum in O3 and the quasi-absence of a seasonal cycle of CO in the LS. This study highlights some regional variabilities in the UT, notably (i) a west–east difference of O3 in boreal summer with up to 15 ppb more O3 over central Russia compared with northeast America, (ii) a systematic west–east gradient of CO from 60 to 140° E, especially noticeable in spring and summer with about 5 ppb by 10 degrees longitude, (iii) a broad spring/summer maximum of CO over northeast Asia, and (iv) a spring maximum of O3 over western North America. Thanks to almost 20 years of O3 and 12 years of CO measurements, the IAGOS database is a unique data set to derive trends in the UTLS at northern midlatitudes. Trends in O3 in the UT are positive and statistically significant in most regions, ranging from +0.25 to +0.45 ppb yr−1, characterized by the significant increase in the lowest values of the distribution. No significant trends of O3 are detected in the LS. Trends of CO in the UT, tropopause, and LS are almost all negative and statistically significant. The estimated slopes range from −1.37 to −0.59 ppb yr−1, with a nearly homogeneous decrease in the lowest values of the monthly distribution (5th percentile) contrasting with the high interregional variability in the decrease in the highest values (95th percentile).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
  • 7
    Publication Date: 2017-09-19
    Description: In situ measurements in the upper troposphere – lower stratosphere (UTLS) are performed in the framework of the European research infrastructure IAGOS (In-service Aircraft for a Global Observing System) for ozone since 1994 and for carbon monoxide since 2002. The flight tracks cover a wide range of longitudes in the northern extratropics, extending from the North American western coast (125° W) to the eastern Asian coast (135° E), and more recently over the northern Pacific ocean. Different tropical regions are also sampled frequently, such as the Brazilian coast, central and southern Africa, southeastern Asia and the western Maritime Continent. As a result, a new set of climatologies for O3 (Aug. 1994–Dec. 2013) and CO (Dec. 2001–Dec. 2013) in the upper troposphere (UT), tropopause layer and lower stratosphere (LS) are made available, including quasi-global gridded horizontal distributions, and seasonal cycles over eight well sampled regions of interest in the northern extratropics. The seasonal cycles generally show a summertime maximum in O3 and a springtime maximum in CO in the UT, in contrast with the systematic springtime maximum in O3 and the quasi-absence of seasonal cycle of CO in the LS. This study highlights some regional variabilities in the UT notably (i) a west-east difference of O3 in boreal summer with up to 15 ppb more O3 over central Russia compared with northeast America, (ii) a systematic west-east gradient of CO from 60° E to 140° E (especially noticeable in spring and summer with about 5 ppb by 10 degrees longitude), (iii) a broad spring/summer maximum of CO over North East Asia, and (iv) a spring maximum of O3 over Western North America. Thanks to almost 20 years of O3 and 12 years of CO measurements, the IAGOS database is a unique data set to derive trends in the UTLS. Trends in O3 in the UT are positive and statistically significant in most regions, ranging from +0.25 to +0.45 ppb yr−1, characterized by the significant increase of the lowest values of the distribution. No significant trends of O3 are detected in the LS. Trends of CO in the UT, tropopause and LS are all negative and statistically significant. The estimated slopes range from −1.37 to −0.59 ppb yr−1 , with a nearly homogeneous decrease of the lowest values of the monthly distribution (fifth percentile) contrasting with the high inter-regional variability of the highest values (95th percentile).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-24
    Description: This paper investigates in an innovative way the climatological vertical stratification of relative humidity (RH) and ozone (O3) and carbon monoxide (CO) mixing ratios within the planetary boundary layer (PBL) and at the interface with the free troposphere (FT). The climatology includes all vertical profiles available at northern mid-latitudes over the period 1994–2016 in both IAGOS (In-service Aircraft for a Global Observing System) and WOUDC (World Ozone and Ultraviolet Radiation Data Centre) databases, which represents more than 90,000 vertical profiles. For all individual profiles, apart from the specific case of surface-based temperature inversions (SBIs), the PBL height is estimated following the elevated temperature inversion (EI) method. Several features of both SBIs and EIs are analysed, including their diurnal and seasonal variations. Based on these PBL height estimates (denoted h), the original approach introduced in this paper consists in building a so-called PBL-referenced vertical distribution of O3, CO and RH by averaging all individual profiles beforehand expressed as a function of z/h rather than z (with z the altitude). Using this vertical coordinate system allows to highlight the features existing at the PBL-FT interface that would have been smoothed otherwise. Results demonstrate that the frequently assumed well-mixed PBL remains an exception for both chemical species. Within the PBL, CO profiles are characterized by a mean vertical stratification (here defined as the standard deviation of the CO profile between the surface and the PBL top, normalized by the mean) of 11 %, with moderate seasonal and diurnal variations. A higher vertical stratification is observed for O3 mixing ratios (18 %), with stronger seasonal and diurnal variability (from ~ 10 % in spring/summer midday/afternoon to ~ 25 % in winter/fall night). This vertical stratification is distributed heterogeneously in the PBL with stronger vertical gradients observed at both the surface (due to dry deposition and titration by NO for O3; and due to surface emissions for CO) and the PBL-FT interface. These gradients vary with the season from lowest values in summer to highest ones in winter. Contrary to CO, the O3 vertical stratification was found to vary with the surface potential temperature following an interesting bell shape with weakest stratification for both lowest (typically negative) and highest temperatures, which could be due to a much lower O3 dry deposition under the presence of snow. Therefore, results demonstrate that EIs act as a geophysical interface separating air masses of distinct chemical composition and/or chemical regime. This is further supported by the analysis of the correlation of O3 and CO mixing ratios between the different altitude levels in the PBL and FT (the so-called vertical autocorrelation). Results indeed highlight lower correlations apart from the PBL-FT interface and higher correlations within each of the two atmospheric compartments (PBL and FT).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-20
    Description: This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of IAGOS. Considering the high interannual variability of biomass burning emissions and the episodic nature of pollution long-range transport, one strength of this study is the amount of data taken into account, namely 30,000 vertical profiles at 9 clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002–2017. As a preliminary, a brief overview of the spatio-temporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). This study focuses on the free troposphere (altitudes above 2km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally-averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110–150 (48)ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25% strongest CO anomalies appears reasonably well distributed along the year, in contrast to the 5% or 1% strongest anomalies that exhibit a strong seasonality with for instance more frequent anomalies during summertime in northern United-States, during winter/spring in Japan, during spring in South-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall at Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO v1.0 IAGOS added-value products that consist of FLEXPART 20-days backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic (MACCity) and biomass burning (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during summer season. In both Japan and south India, the anthropogenic emissions dominate all along the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in southern hemisphere Africa and South America. To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-07
    Description: In the framework of the MOZAIC–IAGOS programme, vertical profiles of ozone (O3) and carbon monoxide (CO) have been available since 1994 and 2002, respectively. This study investigates the variability and trend of both species in three tropospheric layers above the German airports Frankfurt and Munich. About 21 300 flights have taken place over the period 1994–2012, which represents the worldwide densest vertical in situ data set of O3 and CO (with  ∼  96 flights per month on average). The mean vertical profile of ozone shows a strong gradient in the first kilometre during the whole year and in the tropopause region in spring and summer. The mean vertical profile of CO is characterised by high mixing ratios at the ground, a strong decrease in the first kilometre, in particular in winter and autumn, and a moderate one in the free troposphere. O3 minimises in November–December and shows a broad spring/summer maximum in the lower and mid-troposphere and a sharp maximum in summer in the upper troposphere. The seasonal variation of CO shows a broad minimum in July–October close to the surface and in September–October it occurs higher in the troposphere, while the maximum occurs in February–April in the whole troposphere. Over the period 1994–2012, O3 has changed insignificantly (at a 95 % confidence level), except in winter where a slightly significant increase (from +0.83 [+0.13;+1.67] % yr−1 in the LT to +0.62 [+0.02;+1.22] % yr−1 in the UT, relative to the reference year 2000) is found. The O3 5th percentile shows similar upward trends at the annual scale in all three tropospheric layers. All trends remain insignificant for the O3 95th percentile. In contrast, for CO the mean as well as its 5th and 95th percentiles decrease both at the annual scale and at the seasonal scale in winter, spring and summer (although not always in all three tropospheric layers) with trends ranging between −1.22 [−2.27;−0.47] and −2.63 [−4.54;−1.42] % yr−1, relative to the reference year 2004. However, all CO trends remain insignificant in autumn. The phase of the seasonal variation of O3 was found to change in the troposphere. The O3 maxima moves forward in time at a rate of −17.8 ± 11.5 days decade−1 in the lower troposphere, in general agreement with previous studies. Interestingly, this seasonal shift is shown to persist in the mid-troposphere (−7.8 ± 4.2 days decade−1) but turns insignificant in the upper troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...