ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-09-14
    Description: Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, ver- tically resolved measurements of the particle light scatter- ing coefficient (σsp ) and light absorption coefficient (σap ) in the springtime Arctic atmosphere are infrequent, espe- cially measurements at latitudes at or above 80◦ N. Here, re- lationships among vertically distributed aerosol optical prop- erties (σap, σsp and single scattering albedo or SSA), par- ticle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4◦ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground- based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing Sys- tem (GEOS) model, GEOS-Chem, coupled with the TwO- Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem–TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm−1, which represent 98 % of the observed σsp, be- cause the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g−1, the average BC mass ab- sorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two aver- aged modelled MAC values (13.6 and 9.1 m2 g−1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the obser- vations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and σap/2 and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Me- dian values of the measured σap, rBC and the organic com- ponent of particles all increase by a factor of 1.8 ± 0.1, going from near-surface to 750 hPa, and values higher than the sur- face persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900 and 600 hPa. The dif- ferences between modelled and observed optical properties follow the same trend as the differences between the mod- elled and observed concentrations of the carbonaceous com- ponents (black and organic). Model-observation discrepan- cies may be mostly due to the modelled ejection of biomass burning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of σsp 〈 15 Mm−1. The large uncertainties in measuring optical properties and BC, and the large differ- ences between measured and modelled values here and in the literature, argue for improved measurements of BC and light absorption by BC and more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-12
    Description: Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013 . (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water and the overlying atmosphere in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source. (2) Evidence was found of widespread particle nucleation and growth in the marine boundary layer in the CAA in the summertime. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from sea bird colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic material (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...