ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography B: Biomedical Sciences and Applications 276 (1983), S. 395-401 
    ISSN: 0378-4347
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-08
    Description: [1]  Orographic lifting of air masses and other topographically modified flows induce cloud and precipitation formation at larger scales and preferential deposition of precipitation at smaller scales. In this study, we examine orographic effects on small-scale snowfall patterns in Alpine terrain. A polarimetric X-band radar was deployed in the area of Davos (Switzerland) to determine the spatial variability of precipitation. In order to relate measured precipitation fields to flow dynamics, we model flow fields with the atmospheric prediction model ‘Advanced Regional Prediction System (ARPS)’. Additionally, we compare radar reflectivity fields with snow accumulation at the surface as modeled by Alpine3D. We investigate the small-scale precipitation dynamics for one heavy snowfall event in March 2011 at a high resolution of 75 m. The analysis of the vertical and horizontal distribution of radar reflectivity at horizontal polarization and differential reflectivity shows polarimetric signatures of orographic snowfall enhancement near the summit region. Increasing radar reflectivity at horizontal polarization over the windward slopes towards the crest and downwind decreasing reflectivity over the leeward slopes is observed. The temporal variation of the location of maximum concentration of snow particles is partly attributed to the effect of preferential deposition of snowfall: For situations with strong horizontal winds, the concentration maximum is shifted from the ridge crest towards the leeward slopes. Qualitatively, we discuss the relative role of cloud micro-physics such as the seeder-feeder mechanism versus atmospheric particle transport in generating the observed snow deposition at the ground.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...