ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Cohesion Theory ; Tetrastigma ; Xylem pressure (tension) ; Xylem pressure probe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Diurnal changes of xylem pressure in the lianaTetrastigma voinierianum have been measured under greenhouse conditions by means of the recently developed xylem pressure probe. During the early morning hours, tensions in the vessels developed more or less rapidly with time, depending on light intensity. On sunny days, absolute negative pressures down to about -0.4 MPa (atmospheric = 0.1 MPa) were recorded around noon in petiolar or stem xylem vessels, whereas on rainy or cloudy days the xylem pressure remained in the positive sub-atmospheric or slightly negative pressure range. Towards the evening the tension in the vessels always decreased, i.e. the xylem pressure shifted to about atmospheric, or even above-atmospheric, values during the night. Simultaneous xylem pressure recordings at heights of 1 and 5 m frequently yielded either no gradient in tension at all, or far less than expected from the Cohesion Theory. Occasionally, tension gradients were even opposite to those predicted by this theory. Stem-toleaves pressure gradients in accord with the Cohesion Theory were recorded only when tension had been developed during sunny days in the upper branches of the liana, because increases in tension were not immediately propagated to the xylem of the leaves at ground level, as would be expected from a strictly coupled hydraulic system. Parallel recordings of the “xylem tension” using the pressure chamber yielded rather variable values ranging from 0.1 to 1 MPa; diurnal pressure changes could not be detected at all. The data are discussed on the basis of the equation for the chemical activity of water. They strongly suggest that the xylem tension induced by transpiration is not the sole force for water ascent. Other forces, such as osmotic pressure or convectional and interfacial forces, which to a remarkable extent have already been postulated for decades, seem to be equally important.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cohesion Theory ; Tetrastigma ; Xylem pressure (tension) ; Xylem pressure probe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Diurnal changes of xylem pressure in the liana Tetrastigma voinierianum have been measured under greenhouse conditions by means of the recently developed xylem pressure probe. During the early morning hours, tensions in the vessels developed more or less rapidly with time, depending on light intensity. On sunny days, absolute negative pressures down to about -0.4 MPa (atmospheric = 0.1 MPa) were recorded around noon in petiolar or stem xylem vessels, whereas on rainy or cloudy days the xylem pressure remained in the positive sub-atmospheric or slightly negative pressure range. Towards the evening the tension in the vessels always decreased, i.e. the xylem pressure shifted to about atmospheric, or even above-atmospheric, values during the night. Simultaneous xylem pressure recordings at heights of 1 and 5 m frequently yielded either no gradient in tension at all, or far less than expected from the Cohesion Theory. Occasionally, tension gradients were even opposite to those predicted by this theory. Stem-toleaves pressure gradients in accord with the Cohesion Theory were recorded only when tension had been developed during sunny days in the upper branches of the liana, because increases in tension were not immediately propagated to the xylem of the leaves at ground level, as would be expected from a strictly coupled hydraulic system. Parallel recordings of the “xylem tension” using the pressure chamber yielded rather variable values ranging from 0.1 to 1 MPa; diurnal pressure changes could not be detected at all. The data are discussed on the basis of the equation for the chemical activity of water. They strongly suggest that the xylem tension induced by transpiration is not the sole force for water ascent. Other forces, such as osmotic pressure or convectional and interfacial forces, which to a remarkable extent have already been postulated for decades, seem to be equally important.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 198 (1997), S. 1-8 
    ISSN: 1615-6102
    Keywords: Lilium longiflorum ; Pollen tube ; Pressure probe ; Tip growth ; Turgor pressure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The turgor pressure of growing pollen tubes of the lily (Lilium longiflorum Thunb.) has been recorded using a turgor pressure probe. Insertion of the probe's micropipette was routinely accomplished, providing recording periods of 20 to 30 min. Probe insertion did not affect tube growth. The stable turgor values ranged between 0.1 and 0.4 MPa, the mean value being 0.209 ± 0.064 MPa (n=106). A brief increase in turgor, generated by injection of oil through the pressure probe, caused the tube to burst at its tip. Burst pressures ranged between 0.19 and 0.58 MPa, that is, individual lily pollen tubes do not withstand turgor pressure approaching twice their regular turgor pressure. In contrast, parallel experiments using the incipient plasmolysis technique yielded a mean putative turgor pressure of 0.79 MPa either using sucrose (n=24) or mannitol (n=25). Surprisingly, turgor pressure was not significantly correlated with tube growth rate which ranged from zero to 13 μm/min. Nor did it correlate with tube length over the tested range of 100 to 1600 μm. In addition the influence of the medium's osmolality was surprisingly low: raising the external osmotic pressure from 0.36 to 1.08 MPa, with sucrose or mannitol, only caused mean turgor pressure to decline from 0.27 to 0.18 MPa. We conclude that growing lily pollen regulates its turgor pressure remarkably well despite substantial variation in tube growth rate, tube length, and osmotic milieu.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-07-01
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...