ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2024-03-02
    Description: In this dataset we present a global compilation of over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the Late Holocene (0-5000 years ago, or 0-5 ka) and the Last Glacial Maximum (18.5-23.5 ka). Data have been screened for age control, errors, and lithogenic corrections. Overall quality levels were computed by summing each record's scores on the individual criteria. A record is optimal if it is based on a chronology that is constrained by δ18O or 14C and it provides both the raw nuclide concentrations and the associated errors. About one quarter of the records in the database achieved this highest quality level. The large majority of the records in the database are good, passing two of the three criteria, while the remaining quarter are of fair or poor quality.
    Keywords: Comment; DEPTH, water; Distance; Flag; Focusing factor; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Identification; LATITUDE; LONGITUDE; Ocean; ORDINAL NUMBER; Quality level; Ratio; Reference/source; Thorium-230 excess, decay-corrected; Total sediment, flux; Uranium/Thorium ratio
    Type: Dataset
    Format: text/tab-separated-values, 15667 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bausch, Alexandra Renee; Gallego, M Angeles; Harianto, Januar; Thibodeau, Patricia; Bednaršek, Nina; Havenhand, Jonathan N; Klinger, Terrie (2018): Influence of bacteria on shell dissolution in dead gastropod larvae and adult Limacina helicina pteropods under ocean acidification conditions. Marine Biology, 165(2), https://doi.org/10.1007/s00227-018-3293-3
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) increases aragonite shell dissolution in calcifying marine organisms. It has been proposed that bacteria associated with molluscan shell surfaces in situ could damage the periostracum and reduce its protective function against shell dissolution. However, the influence of bacteria on shell dissolution under OA conditions is unknown. In this study, dissolution in dead shells from gastropod larvae and adult pteropods (Limacina helicina) was examined following a 5-day incubation under a range of aragonite saturation states (Ωarag; values ranging from 0.5 to 1.8) both with and without antibiotics. Gastropod and pteropod specimens were collected from Puget Sound, Washington (48°33′19″N, 122°59′49″W and 47°41′11″N, 122°25′23″W, respectively), preserved, stored, and then treated in August 2015. Environmental scanning electron microscopy (ESEM) was used to determine the severity and extent of dissolution, which was scored as mild, severe, or summed (mild + severe) dissolution. Shell dissolution increased with decreasing Ωarag. In gastropod larvae, there was a significant interaction between the effects of antibiotics and Ωarag on severe dissolution, indicating that microbes could mediate certain types of dissolution among shells under low Ωarag. In L. helicina, there were no significant interactions between the effects of antibiotics and Ωarag on dissolution. These findings suggest that bacteria may differentially influence the response of some groups of shelled planktonic gastropods to OA conditions. This is the first assessment of the microbial–chemical coupling of dissolution in shells of either gastropod larvae or adult L. helicina under OA.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Limacina helicina; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; pH; pH, standard deviation; Puget_Sound_OA; Registration number of species; Replicates; Salinity; Salinity, standard deviation; San_Juan_Channel; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1754 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...