ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Keywords: meteorology ; weather ; atmosphere ; atmospheric sciences ; climate research ; environmental research
    Description / Table of Contents: Classifications of circulation weather systems have a long history in meteorology and climatology. Starting with manual classifications over specific regions of the globe, these tools (generally called “catalogs of synoptic types”) were restricted mainly to weather forecasting and historical climate variability studies. In the last decades, the advance of computing resources and the availability of datasets have fostered the development of fast and objective methods that process large amount of data. In recent years numerous methods of circulation type classification have been designed, showing their usefulness on a wide range of applications in scientific domains related to weather, climate, and environment. This Research Topic highlights methodological advances in circulation weather types and also their applications to different research areas. The articles included in this research topic show that circulation weather types can be used not only in Europe, where they have been always more frequent, but also applied to other regions of the world.
    Pages: Online-Ressource (153 Seiten)
    ISBN: 9782889196418
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-17
    Description: This paper presents observational evidence of the atmospheric circulation during the Late Maunder Minimum (LMM, 1685–1715) based on daily wind direction observations from ships in the English Channel. Four wind directional indices and 8-point wind roses are derived at monthly scales to characterize the LMM. The results indicate that the LMM was characterized by a pronounced meridional circulation and a marked reduction in the frequency of westerly days all year round, as compared to the present (1981–2010). The winter circulation contributed the most to the cold conditions. Nevertheless, findings indicate that the LMM in Europe was more heterogeneous than previously thought, displaying contrasting spatial patterns in both circulation and temperature, as well as large decadal variability. In particular, there was an increase of northerly winds favoring colder winters in the first half of the LMM, but enhanced southerlies contributing to milder conditions in the second half of the LMM. The analysis of the atmospheric circulation yields a new and complete classification of LMM winters. The temperature inferred from the atmospheric circulation confirms the majority of extremely cold winters well documented in the literature, while uncovering other less documented cold and mild winters. The results also suggest a nonstationarity of the North Atlantic Oscillation (NAO) pattern within the LMM, with extremely cold winters being driven by negative phases of a “high zonal” NAO pattern and “low zonal” NAO patterns dominating during moderately cold winters.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2019-08-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-08-15
    Print ISSN: 0168-1923
    Electronic ISSN: 1873-2240
    Topics: Geography , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-28
    Description: This paper analyses for the first time the impact of high-latitude blocks and subtropical ridges on near-surface ozone (O3) in Europe during a 15-year period. For this purpose, a catalogue of blocks and ridges over the Euro–Atlantic region is used together with a gridded dataset of maximum daily 8 h running average ozone (MDA8 O3) covering the period 1998–2012. The response of ozone to the location of blocks and ridges with centres in three longitudinal sectors (Atlantic, ATL, 30–0° W; European, EUR, 0–30° E; Russian, RUS, 30–60° E) is examined. The impact of blocks on ozone is regionally and seasonally dependent. In particular, blocks within the EUR sector yield positive ozone anomalies of  ∼  5–10 ppb over large parts of central Europe in spring and northern Europe in summer. Over 20 and 30 % of the days with blocks in that sector register exceedances of the 90th percentile of the seasonal ozone distribution at many European locations during spring and summer, respectively. The impacts of ridges during those seasons are subtle and more sensitive to their specific location, although they can trigger ozone anomalies above 10 ppb in northern Italy and the surrounding countries in summer, eventually exceeding European air quality (AQ) targets. During winter, surface ozone in the north-west of Europe presents completely opposite responses to blocks and ridges. The anticyclonic circulation associated with winter EUR blocking, and to a lesser extent with ATL blocking, yields negative ozone anomalies between −5 and −10 ppb over the UK, northern France and the Benelux. Conversely, the enhanced zonal flow around 50–60° N during the occurrence of ATL ridges favours the arrival of background air masses from the Atlantic and the ventilation of the boundary layer, producing positive ozone anomalies of  ∼  5 ppb in an area spanning from the British Isles to the northern half of Germany. We also show that multiple linear models on the seasonal frequency of occurrence of these synoptic patterns can explain a considerable fraction of the interannual variability in some winter and summer ozone statistics (mean levels and number of exceedances of the 90th percentile) over some regions of western Europe. Thus, this work provides the first quantitative assessments of the remarkable but distinct impacts that the anticyclonic circulation and the diversion of the zonal flow associated with blocks and ridges exert on surface ozone in Europe. The findings reported here can be exploited in the future to evaluate the modelled responses of ozone to circulation changes within chemical transport models (CTMs) and chemistry–climate models (CCMs).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-08
    Description: We have analyzed the record-breaking drought that affected western and central Europe from July 2016 to June 2017. It caused widespread impacts on water supplies, agriculture, and hydroelectric power production, and was associated with forest fires in Iberia. Unlike common continental-scale droughts, this event displayed a highly unusual spatial pattern affecting both northern and southern European regions. Drought conditions were observed over 90% of central-western Europe, hitting record-breaking values (with respect to 1979–2017) in 25% of the area. Therefore, the event can be considered as the most severe European drought at the continental scale since at least 1979. The main dynamical forcing of the drought was the consecutive occurrence of blocking and subtropical ridges, sometimes displaced from their typical locations. This led to latitudinal shifts of the jet stream and record-breaking positive geopotential height anomalies over most of the continent. The reduction in moisture transport from the Atlantic was relevant in the northern part of the region, where decreased precipitation and increased sunshine duration were the main contributors to the drought. On the other hand, thermodynamic processes, mostly associated with high temperatures and the resulting increase in atmospheric evaporative demand, were more important in the south. Finally, using flow circulation analogs we show that this drought was more severe than it would have been in the early past.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-26
    Description: Major sudden stratospheric warmings (SSWs) represent one of the most abrupt phenomena of the boreal wintertime stratospheric variability, and constitute the clearest example of coupling between the stratosphere and the troposphere. A good representation of SSWs in climate models is required to reduce their biases and uncertainties in future projections of stratospheric variability. The ability of models to reproduce these phenomena is usually assessed with just one reanalysis. However, the number of reanalyses has increased in the last decade and their own biases may affect the model evaluation. Here we compare the representation of the main aspects of SSWs across reanalyses. The examination of their main characteristics in the pre- and post-satellite periods reveals that reanalyses behave very similarly in both periods. However, discrepancies are larger in the pre-satellite period compared to afterwards, particularly for the NCEP-NCAR reanalysis. All datasets reproduce similarly the specific features of wavenumber-1 and wavenumber-2 SSWs. A good agreement among reanalyses is also found for triggering mechanisms, tropospheric precursors, and surface response. In particular, differences in blocking precursor activity of SSWs across reanalyses are much smaller than between blocking definitions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-03-15
    Description: In this paper a 55-yr (1948–2002) Northern Hemisphere blocking climatology is presented. Traditional blocking indices and methodologies are revised and a new blocking detection method is designed. This algorithm detects blocked flows and provides for a better characterization of blocking events with additional information on blocking parameters such as the location of the blocking center, the intensity, and extension. Additionally, a new tracking procedure has been incorporated following simultaneously the individual evolution of blocked flows and identifying coherently persistent blocked patterns. Using this method, the longest known Northern Hemisphere blocking climatology is obtained and compared with previous studies. A new regional classification into four independent blocking sectors has been obtained based on the seasonally preferred regions of blocking formation: Atlantic (ATL), European (EUR), West Pacific (WPA), and East Pacific (EPA). Global and regional blocking characteristics have been described, examining their variability from the seasonal to interdecadal scales. The global long-term blocking series in the North Hemisphere showed a significant trend toward weaker and less persistent events, as well as regional increases (decreases) in blocking frequency over the WPA (ATL and EUR) sector. The influence of teleconnection patterns (TCPs) on blocking parameters is also explored, being confined essentially to wintertime, except in the WPA sector. Additionally, regional blocking parameters, especially frequency and duration, are sensitive to regional TCPs, supporting the regional classification obtained in this paper. The ENSO-related blocking variability is evident in blocking intensities and preferred locations but not in frequency. Finally, the dynamical connection between blocking occurrence and regional TCPs is examined through the conceptual model proposed by Charney and DeVore. Observational evidence of a dynamical link between the asymmetrical temperature distributions induced by TCPs and blocking variability is provided with a distinctive contrast “warm ocean/cold land” pattern favoring the blocking occurrence in winter. However, the conceptual model is not coherent in the WPA sector, suggesting different blocking mechanisms operating in this sector.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-07-15
    Description: This paper analyzes the statistical relationship between the total ozone column (TOC) and atmospheric blocking using 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data for the 1978–98 period, with special emphasis on winter and the European and eastern Pacific sectors. Regional blocking occurrence is accompanied by a decrease of TOC within the anticyclonic circulation region and a distinctive ozone increase upstream and downstream (upstream and south) in the Pacific (European) sector. Blocking significantly enhances the likelihood of low TOC extremes, especially over the Scandinavian and the Alaska Peninsulas, where more than 50% of winter blocks lead to TOC values in the lowest tail of the distribution. The relationship between ozone miniholes and blocking is confined to the high latitudes of both basins and is strong in Europe, where about half of the ozone miniholes occur simultaneously with blocking. Blocking-related ozone miniholes (blocking ozone miniholes) are also among the most intense and persistent. Although blocking activity does not drive the interannual variability of regional ozone miniholes, blocking ozone miniholes account for up to two-thirds of the total observed trend of ozone miniholes in Europe. The polar vortex is proposed as a feasible candidate for explaining the enhanced coupling of blocking and ozone miniholes in Europe and its long-term modulation. Blocking ozone miniholes are consistent with an almost purely dynamic origin caused by horizontal transport of ozone-poor air and vertical motions working together at different levels to reduce ozone content. Although the contribution of the former is dominant, accounting for two-thirds of ozone reduction in the 330–850-K column, the effect of the latter becomes a distinctive feature of blocking ozone miniholes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...