ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 665 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 589 (1990), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 36 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: DnaK–DnaJ–GrpE and GroEL–GroES are the best-characterized molecular chaperone systems in the cytoplasm of Escherichia coli. A number of additional proteins, including ClpA, ClpB, HtpG and IbpA/B, act as molecular chaperones in vitro, but their function in cellular protein folding remains unclear. Here, we examine how these chaperones influence the folding of newly synthesized recombinant proteins under heat-shock conditions. We show that the absence of either ClpB or HtpG at 42°C leads to increased aggregation of preS2-β-galactosidase, a fusion protein whose folding depends on DnaK–DnaJ–GrpE, but not GroEL–GroES. However, only the ΔclpB mutation is deleterious to the folding of homodimeric Rubisco and cMBP, two proteins requiring the GroEL–GroES chaperonins to reach a proper conformation. Null mutations in clpA or the ibpAB operon do not affect the folding of these model substrates. Overexpression of ClpB, HtpG, IbpA/B or ClpA does not suppress inclusion body formation by the aggregation-prone protein preS2-S′-β-galactosidase in wild-type cells or alleviate recombinant protein misfolding in dnaJ259, grpE280 or groES30 mutants. By contrast, higher levels of DnaK–DnaJ, but not GroEL–GroES, restore efficient folding in ΔclpB cells. These results indicate that ClpB, and to a lesser extent HtpG, participate in de novo protein folding in mildly stressed E. coli cells, presumably by expanding the ability of the DnaK–DnaJ–GrpE team to interact with newly synthesized polypeptides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 34 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The rise in the levels of σS that accompanies hyperosmotic shock plays an important role in Escherichia coli survival by increasing the transcription of genes involved in the synthesis and transport of osmoprotectants. To determine if other stress regulons collaborate with σS in dealing with high osmolality, we used single copy fusions of lacZ to representative promoters induced by protein misfolding in the cytoplasm (dnaK and ibp ), extracytoplasmic stress [P3rpoH and htrA(degP )] and cold shock (cspA). Both the σ32-dependent, dnaK and ibp, promoters, and the σE-dependent, P3rpoH and htrA, promoters were rapidly but transiently induced when mid-exponential phase cells were treated with 0.464 M sucrose. The cspA promoter, however, did not respond to the same treatment. Overproduction of the cytoplasmic domain of the σE anti-sigma factor, RseA, reduced the magnitude of osmotic induction in λφ(P3rpoH::lacZ ) lysogens, but had no effect on the activation of the dnaK and ibp promoters. Similarly, induction of the dnaK::lacZ and ibp::lacZ fusions was not altered in either rpoS or ompR genetic backgrounds. Osmotic upshift led to a twofold increase in the enzymatic activity of the λTLF247 rpoH::lacZ translational fusion whether or not the cells were treated with rifampicin, indicating that both heat shock and exposure to high osmolality trigger a transient increase in rpoH translation. Our results suggest that the σ32, σE and σS regulons closely co-operate in the managment of hyperosmotic stress. Induction of the σ32 and σE regulons appears to be an emergency response required to repair protein misfolding and facilitate the proper folding of proteins that are rapidly synthesized following loss of turgor, while providing a mechanism to increase the activity of σS, the primary stress factor in osmoadaptation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 373-408 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Molecular biomimetics can be defined as mimicking function, synthesis, or structure of materials and systems at the molecular scale using biological pathways. Here, inorganic-binding polypeptides are used as molecular building blocks to control assembly and formation of functional inorganic and hybrid materials and systems for nano- and nanobiotechnology applications. These polypeptides are selected via phage or cell surface display technologies and modified by molecular biology to tailor their binding and multifunctionality properties. The potential of this approach in creating new materials systems with useful physical and biological properties is enormous. This mostly stems from molecular recognition and self-assembly characteristics of the polypeptides plus the added advantage of genetic manipulation of their composition and structure. In this review, we highlight the basic premises of molecular biomimetics, describe the approaches in selecting and engineering inorganic-binding polypeptides, and present examples of their utility as molecular linkers in current and future applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 782 (1996), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 745 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Escherichia coli Hsp31 is a homodimeric protein that exhibits chaperone activity in vitro and is a representative member of a recently recognized family of heat shock proteins (Hsps). To gain insights on Hsp31 cellular function, we deleted the hchA gene from the MC4100 chromosome and combined the resulting null allele with lesions in other cytoplasmic chaperones. Although the hchA mutant only exhibited growth defects when cultivated at 48°C, loss of Hsp31 had a strong deleterious effect on the ability of cells to survive and recover from transient exposure to 50°C, and led to the enhanced aggregation of a subset of host proteins at this temperature. The absence of Hsp31 did not significantly affect the ability of the ClpB-DnaK-DnaJ-GrpE system to clear thermally aggregated proteins at 30°C suggesting that Hsp31 does not possess disaggregase activity. Although it had no effect on the growth of groES30, ΔclpB or ΔibpAB cells at high temperatures, the hchA deletion aggravated the temperature sensitive phenotype of dnaK756 and grpE280 mutants and led to increased aggregation in stressed dnaK756 cells. On the basis of biochemical, structural and genetic data, we propose that Hsp31 acts as a modified holding chaperone that captures early unfolding intermediates under prolonged conditions of severe stress and releases them when cells return to physiological conditions. This additional line of defence would complement the roles of DnaK-DnaJ-GrpE, ClpB and IbpB in the management of thermally induced cellular protein misfolding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 21 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We have systematically investigated the influence of mutations in the σ32 heat-shock transcription factor and the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines on the folding of preS2-β-galactosidase. This 120kDa fusion protein between the hepatitis B surface antigen preS2 sequence and β-galactosidase was synthesized in a highly soluble and enzymatically active form in wild-type Escherichia coli cells cultured at temperatures between 30°C and 42°C, but aggregated extensively in an rpoH165(Am) mutant. Proper folding was partially restored upon co-overexpression of the dnaKJ operon, but not when the groE operon or dnaK alone were overproduced. The enzymatic activities in dnaK103, dnaJ259 and grpE280 mutants were 40–60% lower relative to a dnaK756 mutant or isogenic wild-type cells at 30°C and 37°C. At 42°C, only 10–40% of the wild-type activity was present in each of the early-folding-factor mutants. Although the synthesis levels of preS2-β-galactosidase were reduced in the dnaK103, dnaJ259 and grpE280 genetic backgrounds, aggregation was primarily responsible for the loss of activity when the cells were grown at 37°C or 42°C. By contrast, the groEL140, groES30 and groES619 mutations, which induced the aggregation of homodimeric ribulose bisphosphate carboxylase (Rubisco), did not affect the solubility of preS2-β-galactosidase at temperatures up to 42°C. Our results are discussed in terms of the current understanding of the E. coli protein-folding cascade. The potential usefulness of heat-shock protein mutants for the production of soluble proteins in an inclusion-body form is addressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Human SPARC (secreted protein acidic and rich in cysteine), an extracellular matrix protein containing 14 cysteine residues, was found to partition equally between soluble and insoluble cellular fractions when overexpressed in the Escherichia coli cytoplasm. While the growth temperature and medium ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...