ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-05-03
    Description: Iron-oxide coloration and deposits in sandstone are significant indicators of the mobility of solutes (Fe 2+ and O 2 ) in groundwater, mainly controlled by host-rock porosity and permeability. We describe the occurrence and geometry of different types of iron-oxide deposits developed within the vadose zone along faults affecting poorly lithified, quartz-dominated, heterolithic sands in the Paraíba Basin, NE Brazil. The development of highly permeable damage zones (10 0 –10 2 Darcy) and low-permeability fault-core–mixed zones (10 –3 –10 1 Darcy) promotes the physical mixing of Fe 2+ -rich waters and oxygenated groundwater. This arrangement favors iron-oxide precipitation as meter-scale sand impregnations, centimeter- to decimeter-scale concretions, and well-cemented decimeter- to meter-thick mineral masses. The formation of hydraulically isolated compartments along hard-linked strike-slip faults promotes: (1) the development of Liesegang bands in a reaction zone dominated by pore-water molecular diffusion of O 2 into Fe 2+ -rich stagnant water, and (2) the precipitation of iron-oxide impregnations and concretions in the fault-core–mixed zone boundaries, likely by O 2 diffusion in flowing Fe 2+ -rich waters. Late-stage fault reactivation provides preferential pathways for the circulation of gravity-driven reducing fluids, resulting in localized dissolution of iron and bleaching along fractures and iron remobilization. These relationships reveal the roles of tectonic activity and near-surface sandstone diagenesis in determining preferential hydraulic pathways for the physicochemical interaction between oxygenated groundwater and iron-rich fluids. Structural setting, fault-zone architecture, and related grain-size–permeability structures determine the dominant mode of solution interaction, leading to the formation of iron-oxide Liesegang bands where O 2 diffuses into stagnant Fe 2+ -rich water, and concretions when diffusion is complemented by Fe 2+ advective flow.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...