ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: As a result of advances related to the combination of computer system technology and numerical modeling, computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. NASA has, therefore, initiated the Numerical Aerodynamic Simulation (NAS) Program with the objective to provide a basis for further advances in the modeling of aerodynamic flowfields. The Program is concerned with the development of a leading-edge, large-scale computer facility. This facility is to be made available to Government agencies, industry, and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. Attention is given to the requirements for computational aerodynamics, the principal specific goals of the NAS Program, the high-speed processor subsystem, the workstation subsystem, the support processing subsystem, the graphics subsystem, the mass storage subsystem, the long-haul communication subsystem, the high-speed data-network subsystem, and software.
    Keywords: COMPUTER SYSTEMS
    Type: IEEE Transactions on Nuclear Science (ISSN 0018-9499); NS-32; 202-208
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: Three examples of advances in computational aerodynamics; (1) three-dimensional inviscid transonic analysis, (2) design calculations for wings, and (3) the computation of viscous-induced aileron buzz, are reviewed. Attention is given to wing surface pressures, design optimization, computer memory, speed and advanced solution methods on parallel computer architecture. It is determined that many implicit approximate-factorization schemes, that have been developed for Navier-Stokes equations, can be coded to run efficiently on microprocessors.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-17
    Description: Implicit approximate factorization techniques (AF) are investigated for the solution of matrix equations resulting from finite-difference approximations to the full potential equation in conservation form. For transonic flows, an artificial viscosity, required to maintain stability in supersonic regions, is introduced by an upwind bias of the density. Two implicit AF procedures are presented, and their convergence performance is compared with that of the standard transonic solution procedure: successive line overrelaxation (SLOR). Subcritical and supercritical test cases are considered. Results indicate a substantial improvement in convergence rate for AF schemes relative to SLOR.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 17; Feb. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: Although the development of a finite difference relaxation procedure to solve the steady form of equations of motion gave birth to the study of computational transonic aerodynamics and considerable progress has been made using the small disturbance theory, no general analytical solution method yet exists for transonic flows that include three dimensional unsteady, and viscous effects. Two techniques are described which are useful in computational transonic aerodynamics applications. The finite volume method simplifies the application of boundary conditions without introducing the constriction associated with small disturbance theory. Governing equations are solved in a Cartesian coordinate system using a body-oriented and shock-oriented mesh network. Only the volume and surface normal directions of the volume elements must be known. The other method, configuration design by numerical optimization, can be used by aircraft designers to develop configurations that satisfy specific geometric performance constraints. Two examples of airfoil design by numerical optimization are presented.
    Keywords: AERODYNAMICS
    Type: Von Karman Inst. for Fluid Dyn. Computational Fluid Dyn., Vol. 1; 122 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-18
    Description: Previously cited in issue 06, p. 797, Accession no. A82-17812
    Keywords: AERODYNAMICS
    Type: (ISSN 0001-1452)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-02
    Description: Basic concepts of finite difference solution techniques for unsteady transonic flows are presented. The hierarchy of mathematical forumulations that approximate the Navier-Stokes equations are reviewed. The basic concepts involved in constructing numerical algorthms to solve these formulations are given. Semi-implicit and implicit schemes are constructed and analyzed. The discussion focuses primarily on techniques for solving the low frequency transonic small disturbance equation. This is the simplest formulation that contains the essence of inviscid unsteady transonic flow physics. The low frequency formulation is emphasized here because codes based on this theory can be run in minutes of processor time on currently available computers. Furthermore, numerical techniques involved in solving this simple formulation also apply to the more complicated formulations. Extensions to these formulations are briefly described. An indication of the present capability for solving unsteady transonic flows is provided. Important areas of future research for the advancement of computational unsteady transonic aerodynamics are described.
    Keywords: AERODYNAMICS
    Type: AGARD Spec. Course on Unsteady Aerodyn.; 24 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-02
    Description: The current and projected use of advanced computers for large-scale aerodynamic flow simulation applied to engineering design and research is discussed. The design use of mature codes run on conventional, serial computers is compared with the fluid research use of new codes run on parallel and vector computers. The role of flow simulations in design is illustrated by the application of a three dimensional, inviscid, transonic code to the Sabreliner 60 wing redesign. Research computations that include a more complete description of the fluid physics by use of Reynolds averaged Navier-Stokes and large-eddy simulation formulations are also presented. Results of studies for a numerical aerodynamic simulation facility are used to project the feasibility of design applications employing these more advanced three dimensional viscous flow simulations.
    Keywords: AERODYNAMICS
    Type: AGARD The Use of Computers as a Design Tool; 12 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: An implicit finite difference procedure was developed for the efficient solution of unsteady transonic flow fields. Sample computations illustrate applications of procedures to aerodynamic problems. Solutions are presented that illustrate three types of shock wave motion that can result from airfoil control surface oscillations. The significant effect of wind tunnel wall conditions on these shock wave motions is demonstrated. Solutions are also presented for a simple aeroelastic problem in which the flow field equations and the structural motion equations are integrated simultaneously in time. Both stable and unstable aeroelastic interactions are considered. The procedure is adapted to compute unsteady aerodynamic force coefficients by the indicial method.
    Keywords: AERODYNAMICS
    Type: AGARD Unsteady Airloads in Separated and Transonic Flow; 11 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-07
    Description: Relaxation solutions to classical three-dimensional small-disturbance (CSD) theory for transonic flow about lifting swept wings are reported. For such wings, the CSD theory was found to be a poor approximation to the full potential equation in regions of the flow field that are essentially two-dimensional in a plane normal to the sweep direction. The effect of this deficiency on the capture of embedded shock waves in terms of (1) the conditions under which shock waves can exist and (2) the relations they must satisfy when they do exist is emphasized. A modified small-disturbance (MSD) equation, derived by retaining two previously neglected terms, was proposed and shown to be a consistent approximation to the full potential equation over a wider range of sweep angles. The effect of these extra terms is demonstrated by comparing CSD, MSD, and experimental wing surface pressures.
    Keywords: AERODYNAMICS
    Type: Advan. in Eng. Sci., Vol. 4; p 1311-1320
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...