ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 67 (1990), S. 5258-5260 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Small-angle neutron scattering is used to define the magnetic state of a powder sample of minnesotaite at points around its hysteresis loop. The silicate [idealized formula [Si4] {Fe2+3}O10(OH)2] has a planar antiferromagentic ground state giving a magnetic 00 (1)/(2) reflection, but this state is destroyed to the profit of a ferromagnetic state (001 reflection) in those grains where the component of the applied field exceeds Hs =0.7 T at 4.2 K, never to be re-established in an isothermal cycle. Likewise, the planar antiferromagnetic ground state is destroyed, and the susceptibility peak eliminated, on field cooling. The existence of spin-glass magnetic properties in a material that does not have a highly degenerate, frustrated ground state derives from the irreversibility of the antiferromagnetic→ferromagnetic transition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Solid State Communications 55 (1985), S. 787-790 
    ISSN: 0038-1098
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 7 (1981), S. 141-148 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Three iron-rich 1:1 clay minerals, greenalite [Si2]{Fe 3 2+ }O5(OH)4, berthiérine [Si, Al]2{Fe2, Mg, Fe3+, Al}3 O5(OH)4 and cronstedtite [Si, Fe3+]2{Fe2+, Fe3+}3O5(OH)4 have been studied by Mössbauer spectroscopy, magnetization measurements and neutron diffraction to determine their magneticproperties. The predominant magnetic coupling is ferromagnetic for pairs of ferrous ions in the octahedral sheet, but antiferromagnetic for ferric pairs. The crystal field at Fe2+ sites in greenalite and berthiérine is effectively trigonal with an orbital singlet l z=0 as ground state. These mainly ferrous minerals order magnetically at 17K and 9K respectively. The magnetic structure of greenalite consists of ferromagnetic octahedral sheets, with the moments lying in the plane, coupled antiferromagnetically by much weaker interplane interactions. The ratio of intraplane to interplane coupling is of order 50, so the silicate has a two-dimensional aspect, both structurally and magnetically. Although the overall magnetic order is established as antiferromagnetic by neutron diffraction, the magnetization curves resemble those of a ferromagnet because of the very weak interplane coupling. Cronstedtite orders antiferromagnetically around 10K. Moments within the planes are antiferromagnetically coupled. The magnetism has no particular two-dimensional character because exchange paths between the layers are provided by the ferric cations present in the tetrahedral sheets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 8 (1982), S. 218-229 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Susceptibility, magnetisation and Mössbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe2+-Fe2+ exchange interactions are ferromagnetic with y ∼ 2 K, whereas Fe3+-Fe3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe2+ → Fe3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1–7 K. One biotite sample showed an antiferromagnetic transition at T N =7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 12 (1985), S. 370-378 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Magnetization, susceptibility and Mössbauer spectra are reported for representative chlorite samples with differing iron content. The anisotropy of the susceptibility and magnetization of a clinochlore crystal is explained using the trigonal effective crystal-field model developed earlier for 1:1 and 2:1 layer silicates, with a splitting of theT 2g triplet of 1,120K. Predominant exchange interactions in the iron-rich samples are ferromagnetic withJ=1.2 K, as for other trioctahedral ferrous minerals. A peak in the susceptibility of thuringite occurs atT m=5.5 K, and magnetic hyperfine splitting appears at lower temperatures in the Mössbauer spectrum. However neutron diffraction reveals no long-range magnetic order in thuringite (or biotite, which behaves similarly). The only magnetic contribution to the diffraction pattern at 1.6 K is increased small angle scattering (q〈0.4 Å−1). A factor favouring this random ferromagnetic ground state over the planar antiferromagnetic state of greenalite and minnesotaite is the presence of pairs of ferric ions on adjacent sites, in conjunction with magnetic vacancies in the octahedral sheets. Monte Carlo simulations of the magnetic ground state of the sheets illustrate how long range ferromagnetic order may be destroyed by vortices forming around the Fe3+-Fe3+ pairs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 16 (1989), S. 672-677 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The magnetic properties of two samples of acmite, one natural and the other synthetic, were determined using magnetization and susceptibility measurements, Mössbauer spectroscopy and neutron diffraction. Exchange interactions are quite strongly antiferromagnetic, the paramagnetic Curie temperature being -46 K for a purely ferric synthetic sample, but its Néel temperature is only 8 K. The principal magnetic mode has the periodicity of the crystallographic structure and is made of ferromagnetic chains, coupled antiferromagnetically. Moments are oriented in a direction close to the chain axis, c. The antiferromagnetic exchange between adjacent Fe3+ ions in the same chain is overcome by their coupling to a common Fe3+ neighbour in the next chain. This indicates that the whole (SiO4) group can act as a superexchange ligand in silicates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 16 (1989), S. 331-333 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The theoretical variation law for the (saturation-free) intensity ratio of a paramagnetic doublet is written in a way which allows one to check easily whether or not experimental data which are intended to be fitted by a (saturation-free) theoretical spectrum or subspectrum follow actually this law. The expression of this law is still simplified by taking the absorber symmetries into account. This is illustrated by two examples: a sheet-silicate mosaic and an olivine single-crystal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 15 (1987), S. 54-58 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The cation distribution in the synthetic samples of olivine-type structure with composition (Fe x Mn1−x )2SiO4 was determined at room temperature and confirms previous Mössbauer results. At low temperature an antiferromagnetic ordering is observed. The magnetic structures can be described in the crystallographic cell (i.e. k=0). They are interpreted on the basis of the irreducible representations (modes) of the symmetry groups which are compatible with Pnma. The dominant modes observed for all compounds, including Fe2SiO4 and Mn2SiO4, only differ in their direction. The main direction of magnetization is dominated by the Fe2+ single-ion anisotropy. At 4.2K, for x=0.29, it is parallel to the c-axis, whereas for x=0.76 the direction is parallel to the b-axis. The anisotropy of the M1-sites dominates in the first case, whereas M2-anisotropy dominates in the second case. The influence of temperature is demonstrated for x=0.50 where c is the main direction at 4.2K, when it is b at 38K.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 13 (1986), S. 281-281 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Hyperfine interactions 23 (1985), S. 133-177 
    ISSN: 1572-9540
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Some useful relations are derived for the polarization dependent optical index of57Fe Mössbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture andf-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...