ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1432-1351
    Keywords: Key words Acetylcholine ; Evolution ; Histamine ; Homology ; Insect ; Vasopressin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The vasopressin-like immunoreactive (VPLI) neurons of grasshoppers have paired cell bodies in the suboesophageal ganglion and both anterior and posterior running axons. In non-oedipodine grasshopper species (e.g. Schistocerca gregaria), most of their arborisations are distributed in dorsal and lateral neuropil, while in oedipodine species (e.g. Locusta migratoria), the neurons have additional extensive axonal projections in both the optic lobes and proximal portions of the ganglionic peripheral nerves. This study demonstrates that these morphological differences correlate with their physiology. In L. migratoria, VPLI neuron activity is regulated primarily via a spontaneously active interneuron which descends from the brain. This descending interneuron is inhibited by a light-activated brain extraocular photoreceptor. Regulation of VPLI neuron activity by an extraocular photoreceptor is also seen in the other oedipodine grasshopper investigated. In the four non-oedipodines examined (from two subfamilies), we find no extraocular photoreceptor regulation of VPLI neuron activity. Despite this, VPLI neuron in S.␣gregaria does appear to be driven by a descending interneuron homologous to that in L. migratoria. The descending interneuron in both species receives similar mechanosensory input and excites the VPLI neuron via cholinergic synapses. Histamine injection into the medial protocerebrum of both species causes strong inhibition of the descending interneuron. The evolution of the neural circuitry, by which an extraocular photoreceptor comes to regulate the descending interneuron in oedipodine species, is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-28
    Description: RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar 5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar 5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar- overexpressing larval motor neurons show reduced excitability whereas Adar 5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-16
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...