ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porter, John R -- Wollenweber, Bernd -- England -- Nature. 2010 Feb 18;463(7283):876. doi: 10.1038/463876b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164901" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*methods ; Crops, Agricultural/genetics/*growth & development/metabolism ; *Food Supply/statistics & numerical data ; Food, Genetically Modified ; *Genetic Engineering ; Ribulose-Bisphosphate Carboxylase/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-04-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 1997-03-01
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Kinetic parameters for NH4+ and NO3− uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m−3 NO3− or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g−1 root FW h−1 for NO3− and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g−1 root FW h−1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m−3), while Km values for NO3− absorption were roughly similar (around 130 mmol m−3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3−-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3− had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3− or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 89 (1993), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In the atmosphere, ammonia (NH3) is the third most abundant N species which, due to various natural and anthropogenic sources, can locally reach high concentrations. The acquisition of atmospheric NH3 by plant shoots will lead to two opposing effects on acid-base balance. Absorption and dissolution of NH3 will cause an alkalinisation, while the assimilation of NH3 results in an acidification. Different rates of these processes would lead to an acid-base imbalance with consequences for the ionic balance of the plant. As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve a pattern of (in)organic ion flow between shoots and roots followed by H+/OH− extrusion into the media via roots. The acquisition of NH3 as additional N source should lead to a reduction in the ratio of mol H+/OH− gained per mol N assimilated.We have recently investigated the NH3 acquisition by Lolium perenne L. cv. Centurion and studied the effects of gas phase NH3 on growth, acid-base balance and water-use efficiency. The experiments, therefore, included the application of a range of 14NH3 to the shoots and of 15N as NO3−, NH4+ or NH4NO3 to the roots. After a summary of the main conclusions from those experiments, we discuss the implications of the use of atmospheric NH3 for the mineral composition of the plants.Over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3. Plants receiving NO3− via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3− supply to the roots. The most significant effect of fumigation on the ion balance was an increase in K+ within all treatments, and this effect was highest in the NH4+-fed plants. The results of the experiments support predictions of a combination of neutralizing biochemical reactions as well as transport of organic anion salts between shoots and roots as possible acid-base regulation mechanisms of the whole plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 89 (1993), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Estimate of global yearly N assimilation by photolithotrophs are 417 Tmol N in the oceans and 167 Tmol on land and in freshwater, of which diazotrophy contributes 1 (sea) and 10 (land plus freshwater) Tmol N. More than half of the combined N assimilated (416 and 157 Tmol N year−1 in the sea and on land plus freshwater, respectively) is due to reduced N, i. e. organic N and, mainly, NH3/NH+4. Assimilation of reduced N amounts to up to 334 Tmol N year−1 in the oceans and at least 79 Tmol N year−1 in freshwater and on land.Reassimilation of NH3/NH+4 within the plant which is related to photorespiration is at least as great as primary NH3/NH+4 assimilation in the sea, and 8 times greater on land. The less frequently considered reassimilation of NH3/NH+4 that is related to phenyl-propanoid (mainly lignin) synthesis in land plants is similar (111 Tmol N) to the primary assimilation of NH3/NH+4 on land each year.Shoots of terrestrial plants have higher NH3 compensation partial pressures than most natural soils, and especially than have ocean-surface biota. However, gaseous transfer of NH3/NH+4 from land to the oceans is a negligible component of the global N cycle. Consideration of area-based N assimilation rates, diffusion distances and diffusion coefficients can rationalise why steady-state NH3/NH+4 concentrations in the sea are lower than in the soil solution.The possibility that photolithotrophs can catalyse the oxidation of NH3/NH+4, or organic N at the same redox level, to N2, N2O, NO, –NO2, NO−, 2, NO2 or NO4+, is critically assessed. The tentative conclusions are that such oxidation probably occurs, but is not a major component of the global conversion of reduced N to N2 and more oxidized N species. More work is needed, especially to determine if NO generated from reduced N (conversion of arginine to citrulline plus NO) has a regulatory role in plants analogous to that established in metazoa.Relative to NO3− (or N2) as N sources, growth using NH3/NH+4 as N source has a number of potential advantages in terms of cost of other resources. Mechanistically predicted economies for NH+4 as N source are: (1) lower cost of photons used and, in transpiring plants, (2) less water lost per unit C assimilated, and (3) lower costs of catalytic Fe, Mn and Mo (unit C assimilated)−1 s−1, as well as (4) a higher maximum growth rate. The lower photon costs are frequently borne out by experimentation and the predicted higher maximum growth rates sometimes occur, while the predicted lower water costs are invariably contradicted. Few data are available for the cost of Fe, Mn or Mo as a function N source.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 72 (1988), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The carboxylate and organic nitrogen content was studied in plants from 5 different habitats in Austria in order to determine both the form of nitrogen utilized by the plants and the preferential site of nitrate reduction within the plant, if nitrate is the predominant nitrogen form and is reduced mainly in the shoots, the ratio between carboxylate and organic nitrogen should be about 1. Ratios less then 1 would indicate either participation of root reduction, transport of carboxylate from shoots to roots or ammonium/ammonia nutrition.In the plants investigated, the lowest ratios were found in a bog, where ammonium is usually the predominant nitrogen form. Species from a xerophytic and a nutrient-rich habitat, as well as from a carr, showed higher organic nitrogen values. Highest contents of carboxylate and organic nitrogen were found in halophytes from the area around the take Neusiedlersee. As additional bicarbonate uptake is known to occur at these sites, accumulation of carboxylate here may not he related to nitrate reduction alone.The relationship between the carboxylate/organic nitrogen ratio and N indicator values revealed the same pattern of differences in the plant species, indicating that the determination of these values could give information of ecophysiological characteristics of, and differences between, plant species from various habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Proton fluxes related to the acid–base balance of intact plants were investigated in detail. A multi-channel titration system was developed in order to regulate the pH in two different sets of nutrient solutions. This system also allowed computation of the dynamics of proton fluxes associated with nutrient uptake in situ.The pH-stat system presented here has proved to be very reliable and sensitive. By additions of acid or base to the nutrient solutions, the set pH could typically be maintained within 0·01 pH units. Experiments investigating net proton fluxes correlated with nitrogen uptake are described. The results show a rapid response of proton fluxes to changes in the form of nitrogen supplied, indicating that alterations in net proton fluxes are directly induced by the nature of the nitrogen source. The stoichiometry of proton fluxes connected to nitrogen uptake could be followed online, and the results are discussed in relation to the charge and acid–base balances of the whole plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Nitrate ; Nitrate reductase ; Nitrogen ; Ecological groups ; Taxonomic groups
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 48 plant species of the families Asteraceae, Chenopodiaceae, Ericaceae, Fabaceae, Lamiaceae, Polygonaceae and Urticaceae were investigated in 14 natural habitats of Central Europe having different nitrate supplies, with respect to their nitrate content, nitrate reductase activity (NRA) and organic nitrogen content. Plants that were flowering were selected where possible for analysis. The plants were subdivided into flowers, laminae, petioles+shoot axes and below-ground organs. Each organ was analyzed separately. Differences among species were found for the three variables investigated. Apart from the Fabaceae, which had particularly high concentrations of organic N, these differences reflect mainly the ecological behaviour, i.e. high nitrate and organic N contents and NRA values per g dry weight were found in species on sites rich in nitrate, and vice versa. Nitrate content, NRA and organic N content were correlated with “nitrogen figures” of Central European vascular plants defined by Ellenberg (1979). By use of regression equations this correlation was tested with species from other systematic groups. Some species were attributed with calculated “N figures” for the first time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...