ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Two of the most often cited earthquake precursors are radon emanation and electric potential variations, but these few reported examples have generally been deemed questionable. If a mechanism relating crustal deformation to radon emanation or electrical signals does indeed exist, it is thought ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2020-07-01
    Description: Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-24
    Description: Fill terraces along rivers represent the legacy of aggradation periods that are most commonly attributed to climate change. In the North Fork of the San Gabriel River, an arid bedrock landscape in the San Gabriel Mountains, California, a series of prominent fill terraces was previously related to climate-change–induced pulses of hillslope sediment supply that temporarily and repeatedly overwhelmed river transport capacity during the Quaternary. Based on field observations, digital topographic analysis, and dating of Quaternary deposits, we suggest instead that valley aggradation was spatially confined to the North Fork San Gabriel Canyon and was a consequence of the sudden supply of unconsolidated material to upstream reaches by one of the largest known landslides in the San Gabriel Mountains. New 10 Be-derived surface exposure ages from the landslide deposits, previously assumed to be early to middle Pleistocene in age, indicate at least three Holocene events at ca. 8–9 ka, ca. 4–5 ka, and ca. 0.5–1 ka. The oldest and presumably most extensive landslide predates the valley aggradation period, which is constrained by existing 14 C ages and new luminescence ages to ca. 7–8 ka. The spatial distribution, morphology, and sedimentology of the river terraces are consistent with deposition from far-traveling debris flows that originated within, and mined, the landslide deposits. Valley aggradation in the North Fork San Gabriel Canyon therefore resulted from locally enhanced sediment supply that temporarily overwhelmed river transport capacity, but the lack of similar deposits in other parts of the San Gabriel Mountains argues against a regional climatic signal. Our study highlights the potential for valley aggradation by debris flows in arid bedrock landscapes downstream of landslides that occupy headwater areas.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-22
    Description: We present a regional model of plate geometry and kinematics of Southeast Asia since the Late Cretaceous, embedded in a global plate model. The model involves subduction polarity reversals and sheds new light on the origin of the subduction polarity reversal currently observed in Taiwan. We show that this subduction zone reversal is inherited from subduction of the proto–South China Sea plate and owes its current location to triple junction migration and slab rollback. This analysis sheds new light on the plate tectonic context of the Taiwan orogeny and questions the hypothesis that northern Taiwan can be considered an older, more mature equivalent of southern Taiwan.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-01
    Description: One approach to investigate earthquake source processes is to produce kinematic source models from inversion of seismic records and geodetic data. The setup of the inversion requires a variety of assumptions and constraints to restrict the range of possible models. Here, we evaluate to what extent physically plausible earthquake scenarios are reliably restituted in spite of these restrictions. We study which characteristics of ruptures, such as rupture velocity, slip distribution, stress drop, rise time, and slip function, can be reliably determined from the inversion of near-field seismic and geodetic data. Using spontaneous dynamic rupture simulations, we generate five earthquake scenarios, each of which has different characteristics of the source process. Then we conduct a blind test by modeling the synthetic near-source data using a standard inversion scheme that optimizes the fit to the observations while searching for solutions with minimum roughness. The inversion procedure assumes a rupture front propagating away from the hypocenter with variable rupture velocity and a simple cosine slip-time function. Our results show that, overall, slip distribution and stress drop are reasonably well determined even for input models with relatively complex histories (such as a subshear rupture transitioning to supershear speeds). Depth-averaged rupture velocities are also reasonably well resolved although their estimate progressively deteriorates away from the hypocenter. The local rise time and slip function are not well resolved, but there is some sensitivity to the rupture pulse width, which can be used to differentiate between pulse-like and crack-like ruptures. Our test for understanding the inaccuracies in Green’s functions shows that random 3D perturbations of 5% standard deviation do not lead to significant degradation of the estimation of earthquake source parameters. As remedies to the current limitations, we propose smoothing slip function parameters and using more complicated inversion schemes only if data necessitates them. Online Material: Figures showing snapshots of forward and inverse modeling of rupture, L curves, slip models, and waveform fits.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Faults can slip seismically or aseismically depending on their hydromechanical properties, which can be measured in the laboratory. Here, we demonstrate that fault slip induced by fluid injection in a natural fault at the decametric scale is quantitatively consistent with fault slip and frictional properties measured in the laboratory. The increase in fluid pressure first induces accelerating aseismic creep and fault opening. As the fluid pressure increases further, friction becomes mainly rate strengthening, favoring aseismic slip. Our study reveals how coupling between fault slip and fluid flow promotes stable fault creep during fluid injection. Seismicity is most probably triggered indirectly by the fluid injection due to loading of nonpressurized fault patches by aseismic creep.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-21
    Description: Field and laboratory observations show that seismicity has non-trivial period-dependent response to periodic stress perturbations. In Nepal, seismicity shows significant variations in response to annual monsoon-induced stress variations but not to semidiurnal tidal stresses of the same magnitude. Such period dependence cannot be explained by the Coulomb failure model and spring-slider rate-and-state model (SRM). Here, we study seismicity response to periodic stress perturbations in a 2-D continuum model of a rate-and-state fault (that is, a finite rate-and-state fault). We find that the resulting seismicity indeed exhibits nearly periodic variations. Their amplitude is maximum at a certain period, T a , and decreases with smaller and larger periods to the SRM predictions, remaining much larger than the SRM predictions for a wide range of periods around T a . We attribute the higher sensitivity of finite faults to their finite nucleation zones which vary in space and have a different slip-velocity evolution than that of the SRM. At periods T 〉〉 T a and T 〈〈 T a , the seismicity-rate variations are in phase with the stress-rate and stress variations, respectively, consistent with the SRM, although a gradual phase shift appears as T increases towards T a . Based on the similarities with the SRM and our simulations, we propose a semi-analytical expression for T a . Plausible sets of model parameters make T a equal to 1 yr, potentially explaining Nepal observations and constraining the fault properties. Our finite-fault findings indicate that a , where a is a rate-and-state parameter and is the effective normal stress, can be severely underestimated based on the SRM.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-23
    Description: An archetypal example of inverted metamorphism purportedly resulting from shear heating is found in the Pelona Schist of southern California (United States). Recent studies demonstrate that the Pelona Schist was subducted and accreted at the onset of Laramide flat subduction under thermal and kinematic conditions not considered in earlier numerical models. To test the shear heating hypothesis under these conditions, we constructed a thermo-kinematic model of flat subduction initiation involving continuous accretion of the schist. A neighborhood algorithm inversion demonstrates that available metamorphic and thermochronologic constraints in the Sierra Pelona mountains are satisfied only if accretion rates were 0.2–3.6 km/m.y and shear heating was minimal (shear stress 0–19 MPa). Minimal shear heating is also consistent with an inversion of models constrained by thermochronology of the East Fork (of the San Gabriel River) exposure of the schist. Shear heating inhibits the formation of modeled inverted gradients during accretion and should not be considered an important factor in their generation.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-05
    Description: The M w 7.9 2008 Wenchuan earthquake ruptured about 280 km of faults in the Longmen Shan of Sichuan province, China, at the eastern edge of the Tibetan Plateau. We use teleseismic waveforms with geodetic data from Global Positioning System, synthetic aperture radar interferometry and image amplitude correlation to produce a source model of this earthquake. The model describes evolution of fault slip during the earthquake. The geodetic data constrains the spatial distribution of fault slip and the seismic waveforms constrain mostly the time evolution of slip. We find that the earthquake started with largely thrust motion on an imbricate system of faults beneath the central Longmen Shan, including the Beichuan Fault and Pengguan Fault, with fault slip at depth extending up to 50 km northwest of the mountain front. The fault ruptures continued northeast along the Beichuan Fault with more oblique slip (right-lateral and thrust) and the proportion of lateral motion increasing in the northern Longmen Shan. The northernmost fault segment has a much steeper dip, consistent with nearly pure strike-slip motion. The kinematic source model shows that the rupture propagated to the northeast at about 2.5–3.0 km s –1 , producing a cascade of subevents with a total duration of about 110 s. The complex fault ruptures caused shortening and uplift of the extremely steep central Longmen Shan, which supports models where the steep edge of the plateau is formed by thrusting over the strong crust of the Sichuan Basin.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...