ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2022-03-21
    Description: European temperate and boreal forests sequester up to 12% of Europe’s annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests’ growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3–11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-21
    Description: Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-21
    Description: Forest biodiversity underpins social welfare by preserving ecosystem multifunctionality and the provision of ecosystem goods and services. Still, the social value of biodiversity is not adequately incorporated into forest management and decision support models. This study proposes a novel approach for defining socially optimal biodiversity levels, wood supply and taxation schemes under climate change. We developed a partial equilibrium model to maximize consumers’ and producers’ surplus until the end of the century, including climate change impacts as productivity shocks in a coupled ecological-economic framework. In our model, we consider a first-best and a second-best taxation scheme to internalize the value of forest biodiversity into forest planning. The framework developed here was applied to a temperate forest landscape in southwestern Germany, where biodiversity has a high social value. Our results indicate an increasing consumption of wood and supply of biodiversity (up to 38.4 %) until the end of the century. Moreover, climate change may affect forest productivity, optimal harvesting rates and taxation schemes. Crucially, current management is unable to capture the adequate social value of biodiversity and is inefficient under climate change. Policy mechanisms are therefore required to correct biodiversity provision in temperate forest landscapes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-23
    Description: Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely-used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models’ performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapor pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe’s common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-02
    Description: The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a set of consistent, multi-sector, multi-scale climate-impact simulations, based on scientifically and politically relevant historical and future scenarios. This framework serves as a basis for robust projections of climate impacts, as well as facilitating model evaluation and improvement, allowing for advanced estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. It also provides a unique opportunity to consider interactions between climate impacts across sectors. ISIMIP2a is the first simulation round of the second phase of ISIMIP, focusing on historical simulations of climate impacts on agriculture, fisheries, permafrost, biomes, regional and global water and forests. This will serve as a basis for model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. This dataset contains ISIMIP2a simulation data from thirteen local forest models: 3D-CMCC FEM (3D-CMCC-FEM LUE, Collalti et al. 2014, 2016), 3D-CMCC-CNR-BGC (3D-CMCC-FEM BGC, Collalti et al. 2019, Collalti et al. 2020), 3PG (Landsberg et al. 2002), 3PGN-BW (Landsberg et al. 1997, Xenakis et al. 2008), 4C (Reyer et al. 2013, Lasch-Born et al. 2020), BASFOR (van Oijen et al. 2014, Cameron et al. 2013), ForClim (Bugmann et al. 2006), FORMIND (Bohn et al. 2014), GOTILWA+ (Nadal-Sala et al. 2017, Keenan et al. 2010, Gracia et al. 2011), Landscape-DNDC (Haas et al. 2012, Grote et al. 2008, 2010, 2011, Holst et al. 2009, Lindauer et al. 2014), PREBAS (Minunno et al. 2016, Valentine et al. 2005), SALEM (Aussenac et al. 2021) and SIBYLA (Fabrika and Ďurský 2006, Hlásny et al. 2014).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-11
    Description: Process-based forest models combine biological, physical, and chemical process understanding to simulate forest dynamics as an emergent property of the system. As such, they are valuable tools to investigate the effects of climate change on forest ecosystems. Specifically, they allow testing of hypotheses regarding long-term ecosystem dynamics and provide means to assess the impacts of climate scenarios on future forest development. As a consequence, numerous local-scale simulation studies have been conducted over the past decades to assess the impacts of climate change on forests. These studies apply the best available models tailored to local conditions, parameterized and evaluated by local experts. However, this treasure trove of knowledge on climate change responses remains underexplored to date, as a consistent and harmonized dataset of local model simulations is missing. Here, our objectives were (i) to compile existing local simulations on forest development under climate change in Europe in a common database, (ii) to harmonize them to a common suite of output variables, and (iii) to provide a standardized vector of auxiliary environmental variables for each simulated location to aid subsequent investigations. Our dataset of European stand- and landscape-level forest simulations contains over 1.1 million simulation runs representing 135 million simulation years for more than 13,000 unique locations spread across Europe. The data were harmonized to consistently describe forest development in terms of stand structure (dominant height), composition (dominant species, admixed species), and functioning (leaf area index). Auxiliary variables provided include consistent daily climate information (temperature, precipitation, radiation, vapor pressure deficit) as well as information on local site conditions (soil depth, soil physical properties, soil water holding capacity, plant-available nitrogen). The present dataset facilitates analyses across models and locations, with the aim to better harness the valuable information contained in local simulations for large-scale policy support, and for fostering a deeper understanding of the effects of climate change on forest ecosystems in Europe.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...