ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2013-11-18
    Print ISSN: 1214-9705
    Electronic ISSN: 2336-4351
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: The Slovenian Environment Agency (ARSO) and Geological Survey of Slovenia (GeoZS) jointly developed a new seismic hazard model for the 2021 Slovenian probabilistic seismic hazard assessment (PSHA) in the scope of a seven-year project starting in 2014. Fault and area source parameters and their uncertainties were estimated, using all available seismological, geological, and seismotectonic data, models, and interpretations. A fault source is a 3D structure, which is described by a fault trace, dip, seismogenic depth, and parameters that describe its kinematics (activity, fault source type, rake, slip rate values) and maximum magnitude the source can generate. An area source is represented by a polygon described with characteristic structural domain (faults, fault systems) and its style of faulting, seismogenic/hypocentral depth, activity rate, and maximum magnitude. The database contains 89 seismogenic faults and 18 area sources in Slovenia and its surroundings. Data includes shapefiles describing the geometry of seismogenic sources, and Excel parametrization tables, linked through source ID and name. Shapefiles provide fault surface traces and polygons for area sources. Both fault and area parametrization tables include two Excel sheets: the first level (sheet names Fault sources and Area Sources) describes all estimated source parameters, and the second (sheet names FS_PSHA and AS_PSHA) consists of parameters that were used in the 2021 Slovenian PSHA model and calculation of national seismic hazard maps. The owner of the database is ARSO, which led the PSHA and financed the seven-year project on active faults in Slovenia, carried out by GeoZS and ARSO. Seismogenic source delineation and estimation of many source parameters were done in the scope of this project. Other parameters were estimated by ARSO based on seismological data.
    Keywords: area source; probabilistic seismic hazard assessment (PSHA); seismic hazard model; seismogenic fault source; Slovenia; Slovenia_seismic_hazard_model
    Type: Dataset
    Format: application/zip, 287.4 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: The H2020 Project SERA (WP25-JRA3; http://www.sera-eu.org) is committed to updating and extending the 2013 European Seismic Hazard Model (ESHM13; Woessner et al., 2015, Bull. Earthquake Eng.) to form the basis of the next revision of the European seismic design code (CEN-EC8). Following the probabilistic framework established for ESHM13, the 2020 update (ESHM20) requires a continent-wide seismogenic model based on input from earthquake catalogs, tectonic information, and active faulting. The development of the European Fault-Source Model (EFSM20) fulfills the requirements related to active faulting. EFSM20 has two main categories of seismogenic faults: crustal faults and subduction systems. Crustal faults are meant to provide the hazard model with seismicity rates in a variety of tectonic contexts, including onshore and offshore active plate margins and plate interiors. Subduction systems are meant to provide the hazard model with both slab interface and intraslab seismicity rates. The model covers an area that encompasses a buffer of 300 km around all target European countries (except for Overseas Countries and Territories, OTCs), and a maximum of 300 km depth for slabs. The compilation of EFSM20 relies heavily on publicly available datasets and voluntarily contributed datasets spanning large regions, as well as solicited local contributions in specific areas of interest. The current status of the EFSM20 compilation includes 1,256 records of crustal faults for a total length of ~92,906 km and four subduction systems, namely the Gibraltar Arc, Calabrian Arc, Hellenic Arc, and Cyprus Arc. In this contribution, we present the curation of the main datasets and their associated information, the criteria for the prioritization and harmonization across the region, and the main strategy for transferring the earthquake fault-source input to the hazard modelers. The final version of EFSM20 will be made available through standard web services published in the EFEHR (http://www.efehr.org) and EPOS (https://www.seismofaults.eu) platforms adopting FAIR data principles. The SERA project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.730900.
    Description: European Union's Horizon 2020 research and innovation programme under grant agreement No.730900
    Description: Published
    Description: Online
    Description: 3T. Sorgente sismica
    Keywords: Seismic Hazard Assessment ; SHA ; Seismogenic fault ; EFSM20 ; SERA ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-02
    Description: The 29 December 2020, Mw 6.4 Petrinja earthquake nucleated at a depth of ~10 km in the Sisak-Moslavina County in northern Croatia, ~6 km WSW of the Petrinja town. Focal mechanisms, aftershocks distribution, and preliminary Sentinel-1 InSAR interferogram suggest that the NW-SE right-lateral strike-slip Pokupsko-Petrinja fault was the source of this event. The Croatian Geological Survey, joined by a European team of earthquake geologists from France, Slovenia and Italy, performed a prompt systematic survey of the area to map the surface effects of the earthquake. The field survey was guided by geological maps, preliminary morphotectonic mapping based on 1:5,000 topographical maps and InSAR interferogram. Locally, field mapping was aided by drone survey. We mapped unambiguous evidence of surface faulting at several sites between Župić to the NW and Hrastovica to the SE, in the central part of the Pokupsko-Petrinja fault, for a total length of ~6.5 km. This is probably a minimum length since several portions of the fault have not been explored yet, and in part crossing forbidden uncleared minefields. Surface faulting was observed on anthropic features (roads, walls) and on Quaternary sediments (soft colluvium and alluvium) and Miocene bedrock (calcarenites). The observed ruptures strike mostly NW-SE, with evidences of strike-slip right-lateral displacement and zones of extension (opening) or contraction (small pressure ridges, moletracks) at local bends of the rupture trace. Those ruptures are interpreted as evidences of coseismic surface faulting (primary effects) as they affect the morphology independently from the slope direction. Ground failures due to gravitational sliding and liquefaction occurrences were also observed, mapped and interpreted as secondary effects (see Amoroso et al., and Vukovski et al., this session). SE of Križ, the rupture broke a water pipeline with a right-lateral offset of several centimetres. Measured right-lateral net displacement varies from a few centimetres up to ~35 cm. A portion of the maximum measured displacement could be due to afterlisp, as it was mapped several days after the main shock. Hybrid surface ruptures (shear plus opening and liquefaction), striking SW-NE, with cm-size left-lateral strike-slip offsets were mapped on the northern side of the Petrinja town, ~3 km NE of the main fault. Overall, the rupture zone appears discontinuous. Several factors might be inferred to explain this pattern such as incomplete mapping of the rupture, inherited structural discontinuities within the Pokupsko-Petrinja fault system, or specific mechanical properties of the Neogene-Quaternary strata
    Description: Published
    Description: Gather Online
    Description: 2T. Deformazione crostale attiva
    Keywords: Surface faulting ; Surface faulting during the 29 December 2020 Mw 6.4 Petrinja earthquake (Croatia)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-22
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: On 29 December 2020, a shallow earthquake of magnitude Mw 6.4 struck northern Croatia, near the town of Petrinja, more than 24 hours after a strong foreshock (Ml 5). We formed a reconnaissance team of European geologists and engineers, from Croatia, Slovenia, France, Italy and Greece, rapidly deployed in the field to map the evidence of coseismic environmental effects. In the epicentral area, we recognized surface deformation, such as tectonic breaks along the earthquake source at the surface, liquefaction features (scattered in the fluvial plains of Kupa, Glina and Sava rivers), and slope failures, both caused by strong motion. Thanks to this concerted, collective and meticulous work, we were able to document and map a clear and unambiguous coseismic surface rupture associated with the main shock. The surface rupture appears discontinuous, consisting of multi-kilometer en échelon right stepping sections, along a NW-SE striking fault that we call the Petrinja-Pokupsko Fault (PPKF). The observed deformation features, in terms of kinematics and trace alignments, are consistent with slip on a right lateral fault, in agreement with the focal solution of the main shock. We found mole tracks, displacement on faults affecting natural features (e. g. drainage channels), scarplets, and more frequently breaks of anthropogenic markers (roads, fences). The surface rupture is observed over a length of ∼13 km from end-to-end, with a maximum displacement of 38 cm, and an average displacement of ∼10 cm. Moreover, the liquefaction extends over an area of nearly 600 km² around the epicenter. Typology of liquefaction features include sand blows, lateral spreading phenomenon along the road and river embankments, as well as sand ejecta of different grain size and matrix. Development of large and long fissures along the fluvial landforms, current or ancient, with massive ejections of sediments is pervasive. These features are sometimes accompanied by small horizontal displacements. Finally, the environmental effects of the earthquake appear to be reasonably consistent with the usual scaling relationships, in particular the surface faulting. This rupture of the ground occurred on or near traces of a fault that shows clear evidence of Quaternary activity. Further and detailed studies will be carried out to characterize this source and related faults in terms of future large earthquakes potential, for their integration into seismic hazard models.
    Description: Published
    Description: 1394–1418
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Seismicity and tectonics ; Earthquake hazards ; Coseismic effects ; M6.4 Petrinja earthquake (Croatia)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-18
    Description: Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA), H2020, grant agreements 730900.
    Description: Published
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 4IT. Banche dati
    Keywords: Geology ; Earth sciences of Europe ; Earth sciences of Africa ; Earth sciences of Asia ; Earth Sciences and Geology ; earthquakes ; hazard model ; seismogenic faults ; slip rate ; crustal fault sources ; subduction fault sources ; Seismology ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...