ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2017-01-19
    Description: Recently Asaadi et al. found that an easterly wave (EW) train over the Atlantic and eastern Pacific is oriented in a southeast–northwest direction because of the observed tilt in the easterly jet. This tilt results in only one out of four (~25%) waves to be located at the cyclonic critical layer south of the jet axis in a comoving frame, and they subsequently developed into named storms. Asaadi et al. suggested a geometrical view for developing disturbances, which is the coexistence of a nonlinear critical layer and a region of weak meridional potential vorticity (PV) gradient over several days. Asaadi et al. focused on the developing waves and did not investigate the nondeveloping ones. To determine whether the nondeveloping EWs are not associated with a critical layer, a simple objective tracking technique is used to identify EWs. Composite views of the large-scale structure and characteristics of nondeveloping EWs show that ~91% of nondeveloping waves are not located on a critical layer, while the remaining ~9% indicate characteristics similar to the developing waves. Examination of the composite Okubo–Weiss parameter indicates that the nondeveloping waves are characterized by larger negative values, implying that they are dominated by deformation, unlike developing waves, which tend to be more immune from the deformation.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-13
    Description: Motivated by Dunkerton et al., a climatological study of 54 developing easterly waves in 1998–2001 was performed. Time-lagged composites in a translating reference frame following the disturbances indicate a weak meridional potential vorticity (PV) gradient of the easterly jet and a cyclonic critical layer located slightly to the south of the weak PV gradient, consistent with previous findings in the marsupial paradigm. Using a closed PV contour as a criterion for the formation of the cat’s-eye, it was shown that on average it takes ~2.6 days for open PV contours to transform to a closed coherent structure. Bootstrap analysis was then applied to determine the reliability of the easterly wave–like pattern in the composite perturbation PV analysis. It is suggested that the coexistence of a nonlinear critical layer and a region of weak meridional PV gradient over several days, found to occur in only ~25% of the easterly waves, might be a major factor to distinguish developing and nondeveloping disturbances. This finding may explain why only a small fraction of easterly waves contribute to tropical cyclogenesis. Additionally, an analytic time scale of the form was obtained, where Q is the mass sink, ε is the amplitude of the initial disturbance, and τ is the cat’s-eye formation time that governs the onset of nonlinearity for forced disturbances on a parabolic jet critical layer. This time scale is consistent with that found in 54 cases of easterly waves that developed into named storms, highlighting the importance of nonlinear and diabatic processes in cat’s-eye formation.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-13
    Description: A shallow-water model is used to study the role of critical layers in tropical cyclogenesis. Forced and unforced problems of disturbances on a parabolic jet associated with weak basic-state meridional potential vorticity (PV) gradients, leading to Kelvin cat’s-eye formation around the jet axis, are first investigated. Numerical simulations with various initial disturbance magnitudes and structures suggest that the results of previous studies can be extended to the next level of complexity toward the more realistic atmosphere. The model is therefore initialized using an observed jet profile obtained from the reanalysis data presented in Part I of this study. For this asymmetric marginally stable basic-state profile, unforced (free) and forced linear integrations show spatial contraction of the perturbation structures in the meridional direction, similar to what occurred in experiments on the parabolic jet. Nonlinear free simulations highlight the role of nonlinear processes in redistributing PV within the critical-layer region. However, they do not yield a realistic time scale for the formation of the cat’s-eye. By including diabatic heating as a mass sink term to represent convective PV generation, the nonlinear forced simulation is found to produce a realistic time scale for cat’s-eye formation, and confirms the analytical solution of τeτQ ~ O(ε−1) obtained in Part I. These results highlight the synergic role of the dynamical mechanisms, including wave breaking and PV redistribution within the nonlinear critical layer characterized by weak PV gradients and the thermodynamical mechanisms such as convectively generated PV anomalies in the cat’s-eye formation in tropical cyclogenesis.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-19
    Description: Leaf area index (LAI) and its seasonal dynamics are key determinants of vegetation productivity in nature and as represented in terrestrial biosphere models seeking to understand land surface atmosphere flux dynamics and its response to climate change. Non-structural carbohydrates (NSCs) and their seasonal variability are known to play a crucial role in seasonal variation in leaf phenology and growth and functioning of plants. The carbon stored in NSC pools provides a buffer during times when supply and demand of carbon are asynchronous. An example of this role is illustrated when NSCs from previous years are used to initiate leaf onset at the arrival of favourable weather conditions. In this study, we incorporate NSC pools and associated parameterizations of new processes in the modelling framework of the Canadian Land Surface Scheme-Canadian Terrestrial Ecosystem Model (CLASS–CTEM) with an aim to improve the seasonality of simulated LAI. The performance of these new parameterizations is evaluated by comparing simulated LAI and atmosphere–land CO2 fluxes to their observation-based estimates, at three sites characterized by broadleaf cold deciduous trees selected from the FLUXNET database. Results show an improvement in leaf onset and offset times with about 2 weeks shift towards earlier times during the year in better agreement with observations. These improvements in simulated LAI help to improve the simulated seasonal cycle of gross primary productivity (GPP) and as a result simulated net ecosystem productivity (NEP) as well.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-14
    Description: Leaf area index (LAI) and its seasonal dynamics are key determinants of vegetation productivity in nature and as represented in terrestrial biosphere models seeking to understand land-surface atmosphere flux dynamics and its response to climate change. Non-structural carbohydrates (NSCs) and their seasonal variability are known to play a crucial role in seasonal variation of leaf phenology and growth and functioning of plants. The carbon stored in NSC pools provides a buffer during times when supply and demand of carbon are asynchronous. An example of this role is illustrated when NSCs from previous years are used to initiate leaf onset at the arrival of favourable weather conditions. In this study, we incorporate NSC pools and associated parameterizations of new processes in the modelling framework of the Canadian Land Surface Scheme-Canadian Terrestrial Ecosystem Model (CLASS-CTEM) with an aim to improve the seasonality of simulated LAI. The performance of these new parameterizations is evaluated by comparing simulated LAI and atmosphere-land CO2 fluxes, to their observation-based estimates, at three sites characterized by broadleaf cold deciduous trees selected from the Fluxnet database. Results show an improvement in leaf onset and offset times with about 2 weeks shift towards earlier times during the year in better agreement with observations. These improvements in simulated LAI help to improve the simulated seasonal cycle of gross primary productivity (GPP) and as a result simulated net ecosystem productivity (NEP) as well.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...