ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-05-07
    Description: This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. This study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weighted mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-01
    Description: This is study provides an overview of precipitation processes and their sensitivities to environmental conditions, in the Central Amazon Basin, during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Taking advantage of the numerous measuring platforms and instruments systems operating during both campaigns sampling cloud structure and environmental conditions during 2014 and 2015, the rainfall variability among seasons, aerosol loading, land surface type, and topography have carefully been characterized. Differences between the wet and dry seasons were examined from a variety of different perspectives. The rain rate distribution, the total amount of rainfall, and the raindrop size distribution (the mean mass-weighted diameter) were quantified for the two seasons. The dry season has a higher average rain rate than the wet season and reflects more intense rain. While the cumulative wet season rainfall amount was four times larger than the total dry season rainfall, reflecting in large total rainfall accumulation. The typical size and life cycle of the Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as well their differences among the seasons. Moreover, we analyse the monthly mean thermodynamical and dynamical variables, measured by radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to the atmospheric aerosol loading is discussed with regard to the mean mass-weighted diameter and rain rate. This topic was evaluated during the wet season only due to the insignificant statistics of rainfall events for different ranges of aerosol loadings and the low frequency of precipitation events during the dry season. The aerosol impacts on the cloud droplet diameter is different for small and large drops. For the wet season, we observe no dependence on land surface type on the rain rate. However, during the dry season, urban areas exhibit the largest rain rate tail distribution, and deforested regions have the lowest mean rain rate. Airplane measurements were performed to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. The vertical motion turned out to be uncorrelated with cloud droplet sizes, but the cloud droplets number concentration revealed a linear relationship to the vertical motion. Clouds over forest exhibit larger droplets than clouds over pastures at all cloud levels. Finally, the connections between topography and rain rate were evaluated, showing a higher rain rate over higher elevations for the dry season.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...