ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: Key words: Mannose transport — Renal reabsorption — Oocyte expression —Xenopus laevis— Membrane vesicles — Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Renal reabsorption appears to play a major role in d-mannose homeostasis. Here we show that in rat kidney, the transport of d-mannose by brush border membrane vesicles from tubular epithelial cells involves an uphill and rheogenic Na-dependent system, which is fully inhibited by d-mannose itself, incompletely inhibited by d-glucose, d-fructose, phloridzin, and phloretin, and noninhibited by l-mannose or disaccharides. In addition, this system exhibits both low capacity (112.9 ± 15.6 pmol/mg/second) and high affinity (0.18 ± 0.04 mm), with a 2:1 stoichiometry for the Na:d-mannose interaction, and low affinity for sodium (16.6 ± 3.67 mm). We also show expression of d-mannose transport by Xenopus laevis oocytes injected with rat renal polyA+ RNA. Kinetic analysis of the expressed transport was performed after RNA enrichment by fractionation through a sucrose density gradient and was shown to be identical to that measured in membrane vesicles. The RNA species encoding the expressed transport has a small mean size, 1 kb approximately, and shows no homology with the SGLT family of Na-dependent d-glucose transporters, as shown by low stringent RT-PCR and northern analysis. The expressed transport is specific for d-mannose, since in spite of a significant inhibition by d-glucose and d-fructose, neither of these two substrates was transported above the level of the water-injected oocytes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...