ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Accounts of chemical research 27 (1994), S. 265-270 
    ISSN: 1520-4898
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 7 (1995), S. 1233-1236 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Perovskite-type SmFeO3 powders were prepared by the thermal decomposition of a heteronuclear complex, Sm(Fe(CN)6)·4H2O and by solid-state reaction between the corresponding single oxides, Sm2O3 and Fe2O3. The thermal decomposition behavior of the complex was studied by thermogravimetric analysis. X-ray diffractometry was used to investigate the structure of the products from the complex thermal decomposition and the formation of SmFeO3 from the oxide mixture. Powders prepared by both methods were used to deposit thick films onto alumina substrates with comb-type gold electrodes. The microstructure and chemical homogeneity of the film surfaces were investigated by scanning electron microscopy and Auger electron spectroscopy. Thick SmFeO3 single-phase films having a homogeneous elemental distribution on the surface were obtained when powder prepared by thermal decomposition of the complex was used for deposition, even when the powder was fired at low temperature (800°C). Surface chemical analysis was performed by X-ray photoelectron spectroscopy (XPS). The O 1s XPS line was deconvoluted into two peaks, attributed to adsorbed oxygen (Oad) and oxygen in the lattice (Olattice). Quantitative analysis showed that the surface coverage of iron, expressed as Fe/(Fe + Sm), was larger for the films prepared using the solid-state reacted powder. Although the Olattice/(Fe + Sm) atomic ratio was not influenced by the processing procedures (and, thus, by iron surface coverage), the amount of Oad decreased with increasing iron surface coverage. A model of the SmFeO3 surface was used to determine that the outermost layer of the perovskite-type SmFeO3 prepared from the complex consisted mainly of samarium ions that could each bond four adsorbed oxygen ions. A single oxygen ion could adsorb onto an iron ion, and therefore, the content of adsorbed oxygen was lower for the film prepared from the solid-state reacted powders, which showed larger iron surface coverage. Electrical conductance measurements, performed with increasing temperature in different gaseous environments, confirmed these findings. Higher conductances and lower activation energies were observed for the films with larger samarium surface coverage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Ultrafine SmFeO3 powders were prepared by the thermal decomposition at 700°C of the corresponding hexacyanocomplex, Sm[Fe(CN)6]·4H2O. These powders were used for the preparation of pastes which were deposited as thick films on alumina substrates with comb-type Au electrodes. The films were fired at different temperatures in the 800-1000°C range. The content of α-terpineol, a component of the organic vehicle, was varied in the range 0.0046-4 wt%. The microstructure, the chemical composition at the surface, the electrical conductivity, and the NO2 sensing properties of the films were investigated. The content of α-terpineol strongly influenced the electrical conductivity and its activation energy. A significant reduction in the NO2 response was observed for the films containing smaller amounts of α-terpineol, together with an increase in conductivity. On the other hand, the largest NO2 response was observed for the films fired at 1000°C when 4 wt% of α-terpineol was used. Such increase in conductivity is attributed to a different oxygen surface layer on the SmFeO3 surface, which is induced by the decomposition reaction of α-terpineol during sintering. The materials processing parameters are thus of primary concern for the NO2 sensing properties of the SmFeO3 thick films. The correlations found between activation energy, NO2 sensitivity, and materials characteristics (influenced by the preparation parameters) are reported. These correlations can be used to design the gas-sensing properties of SmFeO3 thick films for the optimization of their sensing characteristics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The heteronuclear LaMn(dhbaen)(OH)(NO3)(H2O)4 complex was synthesized and perovskite-type hexagonal LaMnO3 was obtained by its thermal decomposition at approximately 700°C. The complex and its decomposition products were analyzed using simultaneous thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, Auger electron spectroscopy (AES), transmission electron microscopy (TEM) characterization, and specific surface area measurements. Although XRD analysis did not show the peaks of LaMnO3 for the sample sintered at 600°C, the presence of polycrystalline LaMnO3 together with an amorphous phase was confirmed by TEM-selected area diffraction. Particle sizes of the samples decomposed at 600° and 700°C were 20 and 50 nm, respectively. For the conventional solid-state reaction method, XRD results showed the formation of a LaMnO3 single phase for the samples fired above 1000°C. However, AES showed that the elemental distributions of La, Mn, and O on the surface were not homogeneous even for the sample sintered at 1200°C. The thermal decomposition of the heteronuclear complex at low temperatures allows the synthesis of single-phase hexagonal LaMnO3 powders having nanosized particles, homogeneous and free of intragranular pores, which are suitable for electroceramics applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Ultrafine powders of trimetallic orthoferrites containing lanthanum and samarium in various ratios were synthesized by thermal decomposition at low temperatures of the corresponding hexacyano complexes to modulate the functional properties of these perovskite-type oxides. The precursors and their decomposition products were analyzed by simultaneous thermogravimetric and differential thermal analyses, X-ray diffractometry, and Raman spectroscopy. Single-phase trimetallic precursors and oxides were obtained. The crystal structure of the perovskite-type oxides was orthorhombic, and the lattice parameters were affected by the ionic size of the rare-earth elements present in the oxides. Raman spectra showed a broadening of the vibrational bands with increased lanthanum content. This was ascribed to some disorder in the oxygen sublattice, related to distortions of the cation–oxygen coordination, and to a reduction of the orthorhombic distortion in the unit-cell basal plane. Most of the Raman modes above 200 cm−1, associated with the vibration of oxygen ions, showed a frequency increase with effective cation mass, defined as meff=xmLa+ (1 –x)mSm, i.e., with samarium content. This was explained by assuming that the force constants increased with decreased Ln–O and Fe–O interatomic distances observed for high samarium content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: CO2-gas sensors were fabricated using NASICON-type dense ceramics with new compositions in the Na3Zr2−(x/4)Si2−xP1+xO12system. The bulk ceramics were prepared from sol-gel-processed powders. Dense electrolytes were obtained for compositions with x= 0.667 and x= 1.333. An improved sinterability was observed with respect to NASICON with conventional composition, which was attributed to liquid-phase sintering. The CO2-gas sensors using these dense samples showed a stable electromotive force (emf) response in dry atmosphere that was similar to the theoretical Nernstian value for a two-electron electrochemical reaction. This was observed also for the NASICON sample with composition x= 1.333 that showed a conductivity far lower than that of the NASICON with conventional composition. The emf changed quickly with changes of the CO2-gas concentration, and steady-state values were observed. The response time, in adsorption and desorption of CO2, was very fast, especially at high CO2concentrations. The influence of humidity on the CO2-sensing performance was investigated. A lower sensitivity and slower response were obtained in humid CO2gas, especially at low CO2concentrations. CO2-sensing measurements at various gas-flow rates were performed to evaluate the reactions occurring at the measuring electrode. The occurrence of a side reaction on the measuring electrode was observed, i.e., the formation of sodium oxides. In dry gas, the reaction took place at low CO2concentrations and small flow rates, whereas the reaction was strongly enhanced in humid environments and occurred over the entire CO2concentration range. However, the sensor performance recovered after switching from humid gas to dry gas. This demonstrated that the humidity affects the emf because of the Na2Oxformation at the electrode, and, thus, the solid electrolyte itself was not degraded by humidity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-4846
    Keywords: NASICON ; sol-gel method ; solid electrolyte ; CO2 detection ; electrochemical sensors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Sol-gel processed NASICON-type with new compositions in the Na3Zr2−(x/4)Si2−x P1+x O12 system showed an improved sinterability with an increase in the x value. This is attributed to liquid phase sintering. This dense electrolyte system is suitable for the application as gas sensors. The CO2 gas sensors using highly dense x = 0.667 (sample B) and x = 1.333 (sample C) samples show a stable EMF response in dry atmosphere which is very close to the theoretical value. Although a lower sensitivity and slower response were obtained in humid CO2 gas, the sensor performance recovered after switching from humid gas to dry gas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Advanced Materials 8 (1996), S. 127-135 
    ISSN: 0935-9648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-8663
    Keywords: NASICON ; sol-gel ; ionic conductors ; electrical properties ; solid electrolyte ; CO2 detection ; electrochemical sensors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Powders and pellets of new NASICON compositions have been synthesized using a mixed inorganic-organic sol-gel synthesis, by the preliminary formation of a pre-hydrolized TEOS xerogel. The investigated compositions can be described by the general formula Na3Zr2-(x/4)Si2-xP1+xO12, obtained by keeping the Na concentration constant (= 3) at the optimum value reported for ionic conductivity, with x = 0 (the usual NASICON composition), 0.667, and 1.333. The xerogels were calcined at various temperatures in the range 400–1200°C. The powder samples were analyzed by TG/DTA, BET measurements, XRD, and SEM. The powders calcined at 500°C were sintered into pellets at 1100°C for 6 h. The sintering behavior of the pellets was investigated by dilatometric measurements and SEM observations. The sinterability increased with increasing x value. Dense samples of the new compositions were obtained by sintering at only 1100°C. This is attributed to the occurrence of liquid phase sintering. The electrical conductivity of the NASICON sintered bodies was measured by ac impedance spectroscopy. The conductivity decreased with decreasing c0 lattice parameter of the hexagonal structure or increasing x value. The CO2 gas sensors, using as electrolyte the dense samples of the new NASICON compositions, showed good EMF response that was very close to the theoretical value, even for the sample with x = 1.333 that showed much lower conductivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...