ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-19
    Description: Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-30
    Description: Typically, commercial sensor nodes are equipped with MCUsclocked at a low-frequency (i.e., within the 4–12 MHz range). Consequently, executing cryptographic algorithms in those MCUs generally requires a huge amount of time. In this respect, the required energy consumption can be higher than using a separate accelerator based on a Field-programmable Gate Array (FPGA) that is switched on when needed. In this manuscript, we present the design of a cryptographic accelerator suitable for an FPGA-based sensor node and compliant with the IEEE802.15.4 standard. All the embedded resources of the target platform (Xilinx Artix-7) have been maximized in order to provide a cost-effective solution. Moreover, we have added key negotiation capabilities to the IEEE 802.15.4 security suite based on Elliptic Curve Cryptography (ECC). Our results suggest that tailored accelerators based on FPGA can behave better in terms of energy than contemporary software solutions for motes, such as the TinyECC and NanoECC libraries. In this regard, a point multiplication (PM) can be performed between 8.58- and 15.4-times faster, 3.40- to 23.59-times faster (Elliptic Curve Diffie-Hellman, ECDH) and between 5.45- and 34.26-times faster (Elliptic Curve Integrated Encryption Scheme, ECIES). Moreover, the energy consumption was also improved with a factor of 8.96 (PM).
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-11
    Description: Energies, Vol. 11, Pages 2085: Efficient and Privacy-Preserving Data Aggregation and Dynamic Billing in Smart Grid Metering Networks Energies doi: 10.3390/en11082085 Authors: An Braeken Pardeep Kumar Andrew Martin The smart grid enables convenient data collection between smart meters and operation centers via data concentrators. However, it presents security and privacy issues for the customer. For instance, a malicious data concentrator cannot only use consumption data for malicious purposes but also can reveal life patterns of the customers. Recently, several methods in different groups (e.g., secure data aggregation, etc.) have been proposed to collect the consumption usage in a privacy-preserving manner. Nevertheless, most of the schemes either introduce computational complexities in data aggregation or fail to support privacy-preserving billing against the internal adversaries (e.g., malicious data concentrators). In this paper, we propose an efficient and privacy-preserving data aggregation scheme that supports dynamic billing and provides security against internal adversaries in the smart grid. The proposed scheme actively includes the customer in the registration process, leading to end-to-end secure data aggregation, together with accurate and dynamic billing offering privacy protection. Compared with the related work, the scheme provides a balanced trade-off between security and efficacy (i.e., low communication and computation overhead while providing robust security).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-21
    Description: Symmetry, Vol. 10, Pages 352: PUF Based Authentication Protocol for IoT Symmetry doi: 10.3390/sym10080352 Authors: An Braeken Key agreement between two constrained Internet of Things (IoT) devices that have not met each other is an essential feature to provide in order to establish trust among its users. Physical Unclonable Functions (PUFs) on a device represent a low cost primitive exploiting the unique random patterns in the device and have been already applied in a multitude of applications for secure key generation and key agreement in order to avoid an attacker to take over the identity of a tampered device, whose key material has been extracted. This paper shows that the key agreement scheme of a recently proposed PUF based protocol, presented by Chatterjee et al., for Internet of Things (IoT) is vulnerable for man-in-the-middle, impersonation, and replay attacks in the Yao–Dolev security model. We propose an alternative scheme, which is able to solve these issues and can provide in addition a more efficient key agreement and subsequently a communication phase between two IoT devices connected to the same authentication server. The scheme also offers identity based authentication and repudiation, when only using elliptic curve multiplications and additions, instead of the compute intensive pairing operations.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-07
    Description: In this manuscript, we present a survey of designs and implementations of research sensor nodes that rely on FPGAs, either based upon standalone platforms or as a combination of microcontroller and FPGA. Several current challenges in sensor networks are distinguished and linked to the features of modern FPGAs. As it turns out, low-power optimized FPGAs are able to enhance the computation of several types of algorithms in terms of speed and power consumption in comparison to microcontrollers of commercial sensor nodes. We show that architectures based on the combination of microcontrollers and FPGA can play a key role in the future of sensor networks, in fields where processing capabilities such as strong cryptography, self-testing and data compression, among others, are paramount.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-31
    Description: This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.5 kHz and 26 kHz. This implementation enhances the possibilities for real-time, embedded and low-power tracking of several simultaneous transmitters. Due to the high degree of parallelism offered by field programmable gate arrays, up to four transmitters can be tracked simultaneously. The implementation requires at most 30% of the available logic gates of a Spartan-6 XC6SLX45 device and is evaluated on accuracy and precision through several ranging topologies. In the first topology, the distance between one transmitter and one receiver is evaluated. Afterwards, ranging analyses are applied between two simultaneous transmitters and one receiver. Ultimately, the position of the receiver against four transmitters using trilateration is also demonstrated. Results show enhanced distance measurements with distances ranging from a few centimeters up to 17 m, while keeping a centimeter-level accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-03
    Description: Video surveillance is widely deployed for many kinds of monitoring applications in healthcare and assisted living systems. Security and privacy are two promising factors that align the quality and validity of video surveillance systems with the caliber of patient monitoring applications. In this paper, we propose a symmetric key-based security framework for the reactive video surveillance of patients based on the inputs coming from data measured by a wireless body area network attached to the human body. Only authenticated patients are able to activate the video cameras, whereas the patient and authorized people can consult the video data. User and location privacy are at each moment guaranteed for the patient. A tradeoff between security and quality of service is defined in order to ensure that the surveillance system gets activated even in emergency situations. In addition, the solution includes resistance against tampering with the device on the patient’s side.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical response of a microphone array with a given beamforming algorithm. However, a tool facilitating the design of a microphone array taking into account the non-ideal characteristics could not be found. Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during the computations and results are validated with acoustic data captured from microphones. It is also possible to generate hardware description language packages containing delay tables facilitating the implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis can also be carried out for fixed-point signal processing. The effects of disabling a given group of microphones within the microphone array can also be calculated. Results and packages can be visualized with a dedicated client application. Users can create and configure several parameters of an emulation, including sound source placement, the shape of the microphone array and the required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing the beamforming results, waterfall diagrams and performance metrics can be generated by the client application. The emulations are also validated with captured data from existing microphone arrays.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-04-11
    Description: Efficient authentication and key agreement protocols between two entities are required in many application areas. In particular, for client–server type of architectures, the client is mostly represented by a constrained device and thus highly efficient protocols are needed. We propose in this paper two protocols enabling the construction of a mutual authenticated key ensuring anonymity and unlinkability of the client and resisting the most well known attacks. The main difference between the two proposed protocols is in the storage requirements on the server side. The innovation of our protocols relies on the fact that, thanks to the usage of the sponge construction, available in the newly proposed SHA3 standard with underlying Keccak design, the computation cost can be reduced to only one hash operation on the client side in case of the protocol with storage and two hash operations for the protocol without storage and thus leads to a very efficient solution.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-04
    Description: Indoor localization based on ultrasound signals has been carried out by several research groups. Most of the techniques rely on a single ultrasound pulse ranging, where the Time of Flight between the ultrasound emitters and a receiver is computed. Ultrasound orthogonal modulation techniques have also been investigated and allow to compute the range between the receiver and multiple simultaneous emitters with increased accuracy. However, no comparative investigation on the possibilities of each of the modulation techniques, comprising Direct Sequence Spread Spectrum, Frequency Hopping Spread Spectrum, and Chirp Spread Spectrum, could be found. Also, common optimized demodulation and correlation techniques for FPGA ready implementations are not widely available. Moreover, the hardware requirements for capturing modulated ultrasound signals could not be found for all the techniques. In this work, the different modulation techniques are optimized and implemented on an FPGA. A dedicated custom ultrasound MEMS-based receiver hardware for broadband ultrasound signal capturing is developed. Several modulation parameters are developed and applied for optimized signal processing. The FPGA resource consumptions are evaluated for the implemented methods. All methods are compared against the regular pulse ranging method, in both single-access and multiple-access ranging mode. Results show that, on average, up to 8 ultrasound-modulated emitters with an orthogonal sequence of length 63 can be demodulated on a Zynq7020 FPGA. In most cases, ranging up to 8 m is demonstrated in both single- and multiple-access mode, with accuracies generally remaining at a centimeter level. The requirements and capabilities for each of the modulation schemes are highlighted in the conclusions.
    Print ISSN: 1687-725X
    Electronic ISSN: 1687-7268
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...