ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2000-01-01
    Description: In anticipation of the launch of the Earth Observing System (EOS) Terra, and the Aqua spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectrora-diometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study areas in Canada and the United States, acquired from different sensors using different snow-mapping algorithms. Four locations are studied: (1) Saskatchewan, Canada; (2) New England (New Hampshire, Vermont and Massachusetts) and eastern New York; (3) central Idaho and western Montana; and (4) North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm from Landsat Thematic Mapper (TM) scenes of each study area at 30 m and when the TM data were degraded to 1 km resolution. U.S. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1km resolution snow maps were also used, as were snow maps derived from 0.5° × 0.5° resolution Special Sensor Microwave Imager (SSM/I) data. A land-cover map derived from the International Geosphere-Biosphere Program land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/ I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g. tree canopies, branches and trunks) are seen in the TM data but not in the coarser-resolution maps which may map the areas as completely snow-covered. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30 m resolutionTM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Results show that the changes in amount of snow cover, as compared to to the 30 m resolution TM maps, are lowest using the TM 1km resolution maps, at 0–40%. The greatest change (〉100%) is found in the New England study area, probably due to the presence of patchy snow cover. A scene with patchy snow cover is more difficult to map accurately than is a scene with a well-defined snowline such as is found on the North and South Dakota scene where the changes were 0–40%. There are also some important differences in the amount of snow mapped using the two different SSM/I algorithms because they utilize different channels.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40%. The highest percent change (less than 100%) is found in the New England study area, probably due to the presence of patchy snow cover. A scene with patchy snow cover is more difficult to map accurately than is a scene with a well-defined snowline such as is found on the North and South Dakota scene where the percent change ranged from 0 to 40%. There are also some important differences in the amount of snow mapped using the two different SSM/I algorithms because they utilize different channels.
    Keywords: Earth Resources and Remote Sensing
    Type: Annals of Glaciology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...