ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1890
    Keywords: Artemisia tridentata ; Mycorrhizal controls ; Saprophytic fungi ; Soil sievings ; Vesicular-arbuscular mycorrhizae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seven treatments were set up to test the effects of vesicular-arbuscular (VA) mycorrhizal fungi and other rhizosphere microorganisms on the growth of Artemisia tridentata ssp. tridentata. Soil sievings had no significant effect on root or shoot mass. Spores and surface-sterile spores were a poor inoculum source, but roots and fresh soil caused 45–75% mycorrhizal infection. Whereas root-inoculated plants still had low growth responses by the end of the experiment, fresh soil inoculum caused the greatest response, and partial fresh inoculum caused a lesser response. These results suggest that fresh soil is an appropriate inoculum for this plant-fungal-soil system, and that the major effect on plant growth of the fresh soil inoculum is from the mycorrhizal fungi and not from the other microorganisms, because the sievings had no effect on plant growth. In addition, soil dilution plating of saprophytic fungi showed 85% species similarity between sterile and fresh soil inoculum by the end of the experiment. Since the effects of non-VA microorganisms are complex and varied, we suggest that researchers work out the type of mycorrhizal controls that best suit their system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1890
    Keywords: Tillandsia ; Catopsis ; Mycorrhiza ; Canopy epiphytes ; Seasonal tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Roots of canopy bromeliads of a seasonal tropical forest were observed for mycorrhizal activity and compared with plants rooted in the soil during the later part of the growing season. No vesicular-arbuscular mycorrhizae or ectomycorrhizae were observed in the bromeliads. However, some interesting septate fungi were observed within the cortex of all samples where the roots were present in organic matter trapped in the canopy. All 15 soil-rooted plant species we observed were vesicular arbuscular mycorrhizal. While no known mycorrhizal types were apparently present in these canopy epiphytes, we cannot rule out the possible formation of symbioses between canopy epiphytes and other fungi in these habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mycorrhiza 5 (1995), S. 299-299 
    ISSN: 1432-1890
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1890
    Keywords: Key words Arbuscular mycorrhiza ; Elevated CO2 ; Microorganisms ; Rhizosphere ; Soil Fungi ; Global change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We advocate the concept of an arbuscular mycorrhiza (AM) as a temporally and spatially complex symbiosis representing a suite of hosts and fungi, as against the more traditional "dual organism" view. We use the hierarchical framework presented in Fig. 1 as a basis for organizing many unanswered questions, and several questions that have not been asked, concerning the role of AM in responses to elevated atmospheric CO2. We include the following levels: plant host, plant population, plant community, functional group and ecosystem. Measurements of the contributions of AM fungi at the various levels require the use of different response variables. For example, hyphal nutrient translocation rates or percent AM root infection may be important measures at the individual plant level, but hyphal biomass or glomalin production and turnover are more relevant at the ecosystem level. There is a discrepancy between our knowledge of the multifaceted role of AM fungi in plant and ecosystem ecology and most of the current research aimed at elucidating the importance of this symbiosis in global-change scenarios. Our framework for more integrated and multifactorial research on mycorrhizal involvement in regulating CO2 responses may also serve to enhance communication between researchers working at different scales on large global-change ecosystem projects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Attempts to understand the ecological effect of increasing atmospheric CO2 concentration, [CO2], usually involve exposing today's ecosystems to expected future [CO2] levels. However, a major assumption of these approaches has not been tested—that ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 400 (1999), S. 628-628 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Carbon in soil affects the formation and stabilization of aggregates (groups of primary particles that adhere to each other more strongly than to surrounding soil particles). Soil aggregation is important for preventing soil loss through wind and water erosion, and the size distribution and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 5 (1999), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Arbuscular mycorrhizae, ubiquitous mutualistic symbioses between plant roots and fungi in the order Glomales, are believed to be important controllers of plant responses to global change, in particular to elevated atmospheric CO2. In order to test if any effects on the symbiosis can persist after long-term treatment, we examined root colonization by arbuscular mycorrhizal (AM) and other fungi of several plant species from two grassland communities after continuous exposure to elevated atmospheric CO2 for six growing seasons in the field. For plant species from both a sandstone and a serpentine annual grassland there was evidence for changes in fungal root colonization, with changes occurring as a function of plant host species. We documented decreases in percentage nonmycorrhizal fungal root colonization in elevated CO2 for several plant species. Total AM root colonization (%) only increased significantly for one out of the five plant species in each grassland. However, when dividing AM fungal hyphae into two groups of hyphae (fine endophyte and coarse endophyte), we could document significant responses of AM fungi that were hidden when only total percentage colonization was measured. We also documented changes in elevated CO2 in the percentage of root colonized by both AM hyphal types simultaneously. Our results demonstrate that changes in fungal root colonization can occur after long-term CO2 enrichment, and that the level of resolution of the study of AM fungal responses may have to be increased to uncover significant changes to the CO2 treatment. This study is also one of the first to document compositional changes in the AM fungi colonizing roots of plants grown in elevated CO2. Although it is difficult to relate the structural data directly to functional changes, possible implications of the observed changes for plant communities are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We initiated a study of the effects of mycorrhizal fungal community composition on the restoration of tropical dry seasonal forest trees. Tree seedlings were planted in a severely burned experimental site (1995 fire) during the growing season of 1998 at the El Edén Ecological Reserve, in north Quintana Roo, Mexico. Seedlings of Leucaena leucocephala, Guazuma ulmifolia, Caesalpinia violacea, Piscidia piscipula, Gliricidia sepium, and Cochlospermum vitifolium were germinated in steam-sterilized soil and either remained uninoculated (nonmycorrhizal at transplanting) or were inoculated with mycorrhizal fungi in soils from early-seral (recently burned) or late-seral (mature forest) inoculum. Inoculum from the early-seral soil was largely Glomus spp., whereas a diverse community of arbuscular mycorrhizal fungi were reintroduced from the mature forest including species of Scutellospora, Gigaspora, Glomus, Sclerocystis, and Acaulospora. Plants grew better when associated with the mature forest inoculum, unlike a previous experiment in which plants grew taller with the early-seral inoculum. Reasons for the different responses include a less-intense burn resulting in more residual organic matter. In addition to mycorrhizal responses, plants were severely affected by deer browsing. One tree species, C. vitifolium found in the region but not in the reserve, was eliminated by a resident fungal facultative pathogen. Several practical conclusions for restoration can be made. The common nursery practice of soil sterilization may be detrimental because it eliminates beneficial mycorrhizal fungi; species not native to the site may not survive because they may not be adapted to the local pathogens; and herbivory can be severe depending on the landscape context of the restoration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Restoration ecology 1 (1993), S. 0 
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Soil microbial activity and soil nutrients were monitored on a revegetated coal surface mine in southwestern Wyoming from the initial planting in 1982 through 1987. Total soil nitrogen (N) and organic matter did not change during this period. However, despite no changes in available phosphorus (P) concentrations, the total P declined over 50% during the five-year period, with no apparent reduction in the loss rates. The greatest loss was in the bound inorganic P pool. Moisture appeared not to limit microbial mass-C. Microbial mass-C was higher under shrubs than in interspaces and increased with time. Total organic matter did not increase. Thus, the ratio of microbial mass-C to organic matter-C increased during the study period. This suggests that the input of readily decomposable substrate may limit microbial activity. During the study period, all above-ground litter was removed by wind. Root production in the surface soils was low and highly variable and, in this habitat, probably did not contribute largely to the organic matter status. These data suggest that despite an apparent recovery of many parameters used to indicate reclamation or restoration success, the soil-bound P pools could be undergoing a loss. Microbial-C and organic matter changes indicate a system that is not approaching equilibrium within the required monitoring period of most restoration efforts. These parameters could eventually reduce the recovery potential of restored sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Restoration ecology 3 (1995), S. 0 
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effect of a pipeline corridor constructed through an ecological reserve in Southern California was investigated by assessing plant species composition and soil chemistry. A homogeneous plant community comprised primarily of exotic annuals was found along the entire length of the corridor. This community has low similarity to the adjacent native plant communities. Soil organic matter was significantly less on the disturbed corridor than in contiguous undisturbed areas. Both available nitrogen and extractable phosphorus values were greater in the disturbed corridor. By contrast, total nitrogen was significantly higher outside the pipeline. The more labile litter of the exotic annuals allows increased mineralization along the corridor than does the more recalcitrant litter of the native perennial shrubs in the undisturbed areas. Once established, the weedy exotic annual litter may completely turn over organic matter and nitrogen, favoring the persistence of the weedy annuals. These exotic annuals appear to be moving into three of the native communities - grassland, coastal sage, and oak woodland - that have less organic matter and a more open plant canopy. Poor restoration efforts can lead to the establishment of such exotics, subsequent invasion into the surrounding undisturbed habitat, and degradation of the reserve.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...