ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-11-15
    Description: Introduction Exosomes are small vesicles (50-100 nm) of endocytic origin, which are released in the extra-cellular milieu by several cell types. It is known that cell-to-cell communication is partially mediated by exosomes. Exosomes play a role in tumor progression where they have been shown to carry and transfer microRNAs (miRNAs) and proteins to the recipient cells. In this study, we sought to characterize circulating exosomes in terms of their ability to modulate the microenvironment, leading to Multiple Myeloma (MM) progression. Method Exosomes were collected from peripheral blood obtained from healthy individuals (n=5), MGUS patients (n=5) and MM patients (n=10), using ultracentrifugation. Further characterization was carried out using electron microscopy and immunogold labeling for the detection of CD63 and CD81 and for the size using Nanosight® analysis. MiRNA were isolated using miRNeasy mini kit (Qiagen®) and profiling has been performed using nCounter miRNA expression assay (Nanostring® Technologies, Seattle WA). Bioinformatic software tools (TargetScan, MIRDB) were used to predict the target genes of identified miRNA to define their function. Proteins were isolated from exosomes following lysis and precipitated by acetone before in-solution trypsin digestion and ZipTip® purification. Proteomic analysis was performed using mass spectrometry (BIDMC Mass Spectrometry, ObiTrap Elite®). Spectral count numbers were determined with a false discovery rate (FDR) less than 0.5%. Results Circulating exosomes were studied at ultrastructural level showing positivity for CD81 and CD63, as demonstrated by immunogold labeling and electron microscopy. Exosome number and size did not differ based on clinical stage on Nanosight® analysis. We identified 16 miRNAs differentially expressed in circulating exosomes obtained from MGUS patients compared to healthy subjects (FC 〉2 or
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-16
    Description: Abstract 440 Background. Multiple myeloma (MM) patients present with multiple lytic lesions at diagnosis, indicating the presence of continuous dissemination of MM cells from the primary site of tumor development to multiple distant bone marrow (BM) niches. We hypothesized that stromal-derived factor-1 (SDF-1) may represent a target for preventing transition from MGUS (micrometastatic stage) to active-MM (macrometastatic stage); thus resulting in inhibition of MM progression. We therefore evaluated SDF-1 expression in the BM of patients with MGUS, MM, compared to healthy individuals; and tested NOX-A12, a high affinity l-oligonucleotide (Spiegelmer) binder to SDF-1 in MM, looking at its ability to modulate MM cell tumor growth and MM cell homing to the BM in vitro and in vivo . Methods. SDF-1 levels were evaluated by immunohistochemistry on BM specimens obtained from patients with MGUS, active-MM, or healthy individuals; and confirmed by ELISA, using conditioned-medium of BM-mesenchymal stromal cells obtained from MGUS, active-MM and healthy individuals. BM metastatic lesions from primary epithelial tumors were also considered. Co-localization of MM tumor cells (MM.1S-GFP+) with SDF-1 was tested in vivo by in vivo confocal microscopy, using both AlexaFluor633-conjugated-anti-SDF-1 monoclonal antibody and AlexaFluor647-conjugated-NOX-A12 oligonucleotide. Effect of NOX-A12 on modulating MM cell dissemination was tested in vivo, by using in vivo confocal microscopy. In vivo homing and in vivo tumor growth of MM cells (MM.1S-GFP+/luc+) were assessed by using in vivo confocal microscopy and in vivo bioluminescence, in SCID mice treated with 1) vehicle; 2) NOX-A12; 3) bortezomib; 4) NOX-A12+bortezomib. Detection of mobilized MM-GFP+ cells ex vivo was performed by flow cytometry. Effects of drug combination on dissemination of MM cells to distant BM niches was evaluated ex vivo by immunofluorescence on femurs obtained from each cohort of mice. DNA synthesis and adhesion of MM cells in the context of NOX-A12 (50–100nM) treated primary MM BM stromal cells (BMSCs) in presence or absence of bortezomib (2.5–5nM) were tested by thymidine uptake and adhesion in vitro assay, respectively. Synergism was calculated by using CalcuSyn software. NOX-A12-dependent-modulation of signaling was evaluated by western blot on MM cells exposed or not to primary BM-MSCs. Results. Patients with active-MM present with higher BM SDF-1 expression vs. MGUS patients and healthy individuals. Similarly, BM presenting with metastasis from epithelial primary malignancies had higher SDF-1 levels compared to healthy subjects, thus suggesting the importance of SDF-1 in favoring tumor cell metastasis to BM niches. SDF-1 co-localized at BM level with MM tumor cells in vivo. In vitro, NOX-A12 induced a dose-dependent de-adhesion of MM cells from the BMSCs supported by inhibition of BM-MSC-mediated phosphorylation of ERK1/2 and cofilin. These findings were corroborated and validated in vivo: NOX-A12 induced MM cell mobilization from the BM to the peripheral blood as shown ex vivo, by reduced percentage of MM cells in the BM and increased number of MM cells within the peripheral blood of mice treated with NOX-A12 vs. control (BM: 57% vs. 45%; PB: 2.7% vs. 15%). This was supported by inhibited homing of MM cells to the BM of those mice pre-treated with NOX-A12. We next showed that NOX-A12-dependent de-adhesion of MM cells from BMSCs lead to enhanced MM cell sensitivity to bortezomib, as shown in vitro, where a synergistic effect between NOX-A12 and bortezomib was observed (C.I.: .57-.76). These findings were validated in vivo: tumor burden was similar between NOX-A12- and control mice whereas bortezomib-treated mice showed significant reduction in tumor progression compared to the control (P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-16
    Description: Abstract 4009 Background. The SDF1/CXCR4 axis plays a major role in homing and trafficking of multiple myeloma (MM) to the bone marrow (BM), and disruption of the interaction of tumor cells with the BM leads to enhanced sensitivity to therapeutic agents. Also, hypoxia leads to EMT activation as well as CXCR4 up-regulation in MM cells. We therefore hypothesized that CXCR4 may represent a crucial regulator of EMT in MM and an important target for preventing MM disease dissemination. Methods. Primary MM cells (CD138+); MM cell lines (MM.1S, RPMI.8226); and primary MM bone marrow stromal cells (BMSCs) were used. Dissemination of MM.1S/GFP+ cells to distant bone marrow niches was evaluated in vivo, by using in vivo confocal microscopy. CXCR4-loss of function studies were performed by transfecting MM cells with either a scrambled probe or CXCR4-siRNA. A novel HuMAb anti-CXCR4 (BMS-936564; Bristol Myers Squibb, NY) was used. Migration towards SDF-1 and BMSCs was evaluated. Cytotoxicity and DNA synthesis were measured by MTT and 3H-thymidine uptake, respectively. Cell signaling, apoptotic- and EMT-related pathways were studied by Western Blot. Synergism was calculated by using the Chou-Talalay method. In vivo, MM tumor growth was evaluated by using xenograft mouse models and a melanoma xenograft mouse model was used to validate the effect of anti-CXCR4 antibody on modulating tumor cell metastasis. Results. We demonstrated down-regulation of Twist, Snail and Slug, together with up-regulation of E-Cadherin in CXCR4-siRNA-transfected cells, compared to scrambled probe-transfected cells. These findings were next validated by using the new selective CXCR4 antibody (BMS-936564); and confirmed that BMS-936564-dependent inhibition of CXCR4 led to inhibition of Twist, Snail, and Slug; with up-regulation of E-Cadherin. These data were further corroborated in vivo, by using in vivo confocal microscopy: mice treated with BMS-936564 presented with less MM cell dissemination to distant bone marrow niches, compared to vehicle-treated mice, supporting the hypothesis that CXCR4 may represent a crucial modulator of tumor cell dissemination. These data were also confirmed in vivo, by using a xenograft melanoma model, where BMS-936564-treated mice presented with a reduced number of metastasis, compared to vehicle-treated mice. These in vivo data were supported by in vitro evidence showing the ability of BMS-936564 to functionally target MM cells in terms of migration, adhesion and survival. BMS-936564 inhibited migration of MM cells towards SDF-1a and primary MM BMSCs, in a dose-dependent manner. In addition, survival and adhesion of primary MM cells to BMSCs were inhibited by BMS-936564 in a dose-dependent manner. BMS-936564 targeted MM cells in the context of BM milieu, by overcoming BMSCs-induced proliferation of tumor cells. Moreover, BMS-936564 synergistically enhanced bortezomib-induced cytotoxicity in MM cells. BMS-936564-dependent activation of apoptotic pathways in MM cells was documented, as shown by cleavage of caspase-9 and PARP. SDF-1a-induced ERK-, Akt-, and Src-phosphorylation were inhibited by BMS-936564 in a dose-dependent manner. Importantly, BMS936564 inhibited MM cell proliferation in vivo in xenograft mouse models. Conclusion. These findings indicate that CXCR4 represents a valid therapeutic target due to its ability to modulate EMT, and that BMS-936564 functionally targets MM cell migration, adhesion and survival; thus providing evidence for using the anti-CXCR4 antibody, BMS-936564, as a therapeutic modality for MM. Disclosures: Kuhne: Bristol-Myers Squibb: Employment. Cohen:Bristol-Myers Squibb: Employment. Cardarelli:Bristol-Myers Squibb: Employment. Ghobrial:Novartis: Advisory Board Other; Onyx: Advisory Board, Advisory Board Other; Millennium: Advisory Board, Advisory Board Other; Bristol Myers Squibb: Advisory Board, Advisory Board Other.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-15
    Description: Background MicroRNAs (miRNAs) play a pivotal role in tumorigenesis, due to their ability to target mRNAs involved in the regulation of cell proliferation, survival and differentiation. Lin28B is an RNA binding protein that regulates Let-7 miRNA maturation. Lin28B and Let-7 have been described to act as oncogenes or tumor suppressor genes, respectively, as demonstrated both in solid cancer and hematologic malignancies. However, the role of the Lin28B/Let-7 axis in Multiple Myeloma (MM) has not been studied. Method Lin28B level expression in MM patients was studied using previously published gene expression profiling (GEP) datasets. Let-7 expression levels were assessed in CD138+ primary MM cells and bone marrow stromal cells (BMSCs) by using PCR, as well as in circulating exosomes using miRNA array (Nanostring® Technology). Exosomes were collected from both normal and MM peripheral blood, using ultracentrifugation; and further studied by using electron microscopy and immunogold labeling for the detection of CD63 and CD81. The knockdown of Lin28B was performed on MM cell lines (U266, MM.1S, MOLP-8) by using a lentiviral Lin28B shRNA. Gain- and loss-of function studies for Let-7 were performed using Let-7 mimic and anti-Let-7 transfection in MM cell lines (MM1S, U266) and primary BMSCs. Cell proliferation has been evaluated by using thymidine assays. Effects of Let-7 and Lin28B on signaling cascades have been evaluated by western blot. Results Two independent GEP datasets (GSE16558; GSE2658) were analyzed for Lin28B expression, showing a significantly higher level in MM patients compared to healthy controls. In addition, high Lin28B levels correlated with a shorter overall survival (p = 0.0226). We next found that the Let-7 family members are significantly down-regulated in MM primary cells, particularly Let-7a and b (5 fold change, p 〈 0.05), as demonstrated by using qRT-PCR. Similarly, miRNA arrays showed a lower expression of Let-7-related miRNAs in circulating exosomes obtained from MM patients compared to healthy individuals. We further dissected the functional relevance of Lin28B in MM cells, by performing Lin28 knockdown (KD) in MM cell lines (U266, MOLP-8). This led to a significant decrease in MM cell proliferation associated with G1 phase cell cycle arrest. This was supported by up-regulation of Let-7 and down-regulation of c-Myc, Ras and Cyclin D1 in Lin28 KD MM cells. To further prove that Lin28B-dependent effects on MM cells are mediated by Let7, we next showed that let-7 gain- and loss-of-function studies regulate MM cell proliferation and Myc expression. Lin28B regulation in MM cells is dependent on Let-7, as demonstrated by an increase of both cell proliferation and c-Myc expression after anti-Let-7 transfection in the Lin28B KD cells. We therefore studied the regulation of Let-7 in MM cells through the interaction with BMSCs. Let-7 expression levels were significantly lower in BMSCs obtained from MM patients compared to healthy donors. Interestingly, the Let-7 expression level in MM cells was increased after co-culture with Let-7 over-expressing BMSCs, associated with a decrease of both cell proliferation and c-Myc expression. This suggests a potential transfer of Let-7 from BMSCs to MM cells. Conclusion This work describes a new signaling pathway involving Lin28B, Let-7, Myc and Ras in MM. Let-7 expression in MM cells is also regulated through the interaction of MM cells with BMSCs, leading to cell proliferation and Myc regulation in MM. Interference with this pathway might offer therapeutic perspectives. Disclosures: Leleu: CELGENE: Honoraria; JANSSEN: Honoraria. Daley:Johnson and Johnson: Consultancy, Membership on an entity’s Board of Directors or advisory committees; MPM Capital: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Verastem: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Epizyme: Consultancy, Membership on an entity’s Board of Directors or advisory committees; iPierian: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Solasia, KK: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Ghobrial:Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...