ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018
    Description: The present study aimed to develop an integrated treatment of agro-industrial waste for biofuel (biogas and syngas) production and for phosphorus recovery. In the first step, an anaerobic digestion (AD) process was carried out on two different mixtures of raw agro-industrial residues. Specifically, a mixture of asparagus and tomato wastes (mixture-1) and a mixture of potatoes and kiwifruit residues (mixture-2) were investigated. The results proved that the properties of mixtures notably affect the evolution of the digestion process. Indeed, despite the lower organic load, the maximum biogas yield, of about 0.44 L/gCODremoved, was obtained for mixture-1. For mixture-2, the digestion process was hindered by the accumulation of acidity due to the lack of alkalinity in respect to the amount of volatile fatty acids. In the second step, the digestates from AD were utilized for syngas production using supercritical water gasification (SCWG) at 450 °C and 250 bar. Both the digestates were rapidly converted into syngas, which was mainly composed of H2, CO2, CH4, and CO. The maximum values of global gasification efficiency, equal to 56.5 g/kgCOD, and gas yield, equal to 1.8 mol/kgTS, were detected for mixture-2. The last step of the integrated treatment aimed to recover the phosphorus content, in the form of MgKPO4ˑ6H2O, from the residual liquid fraction of SCWG. The experimental results proved that at pH = 10 and Mg/P = 1 it is possible to obtain almost complete phosphorus removal. Moreover, by using the scanning electronic microscopy, it was demonstrated that the produced precipitate was effectively composed of magnesium potassium phosphate crystals.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-30
    Description: Water, Vol. 10, Pages 404: Nanoscopic Zero-Valent Iron Supported on MgO for Lead Removal from Waters Water doi: 10.3390/w10040404 Authors: Alessio Siciliano Carlo Limonti Lead is one of the most toxic heavy metals that can create a severe risk to water ecosystem health. Zero-valent iron is an effective material for Pb2+ removal treatments. In particular, nanoscopic zero-valent iron (nZVI) particles are characterized by high reaction rates; nevertheless, their utilization in water and groundwater remediation techniques requires further investigations. Indeed, it is necessary to define effective methods able to avoid the drawbacks due to the aggregation tendency of nanoparticles and their potential uncontrolled transport in groundwater. In this work, nZVI was supported on magnesium oxide grains (MgO_nZVI) to synthesize an alternative material for lead removal from aqueous solutions. Many experiments were conducted under several operating conditions in order to analyze the effectiveness of the produced material in Pb2+ abatement. The performance of MgO_nZVI was also compared with those detected using commercial microscopic Fe0 (mZVI) as a reactive material. The experimental findings showed a much greater reactivity of the supported nanoscopic iron particles. By means of a kinetic analysis of batch tests results, it was verified that, both for MgO_nZVI and mZVI, the lead abatement follows a pseudo-second-order kinetic law. The reaction rates were affected by the initial pH of the treatment solution and by the ratio between the Fe0 amount and initial lead concentration. The efficiency of MgO_nZVI in a continuous test was steadily around 97.5% for about 1000 exchanged pore volumes (PV) of reactive material, while by using mZVI, the lead removal was approximately 88% for about 600 PV. X-ray diffraction (XRD) and energy-dispersive spectroscopy EDS analyses suggested the formation of typical iron corrosion products and the presence of metallic lead Pb0 and Pb2+ compounds on exhausted materials.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...