ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Abstract Although general trends in transgressive to highstand sedimentary evolution of river‐mouth coastlines are well known, the details of the turnaround from retrogradational (typically estuarine) to aggradational–progradational (typically coastal/deltaic) stacking patterns are not fully resolved. This paper examines the middle‐late Holocene eustatic high stand succession of the Po Delta: its stratigraphic architecture records a complex pattern of delta outbuilding and coastal progradation that followed eustatic stabilization, since around 7.7 cal kyr BP. Sedimentological, palaeoecological (benthic foraminifera, ostracods and molluscs) and compositional criteria were used to characterize depositional conditions and sediment‐dispersal pathways within a radiocarbon‐dated chronological framework. A three‐stage progradation history was reconstructed. First, as soon as eustasy stabilized (7.7 to 7.0 cal kyr BP), rapid bay‐head delta progradation (ca 5 m/year), fed mostly by the Po River, took place in a mixed, freshwater and brackish estuarine environment. Second, a dominantly aggradational parasequence set of beach‐barrier deposits in the lower highstand systems tract (7.0 to 2.0 cal kyr BP) records the development of a shallow, wave‐dominated coastal system fed alongshore, with elongated, modestly crescent beaches (ca 2.5 m/year). Third, in the last 2000 years, the development of faster accreting and more rapidly prograding (up to ca 15 m/year) Po delta lobes occurred into 30 m deep waters (upper highstand systems tract). This study documents the close correspondence of sediment character with stratal distribution patterns within the highstand systems tract. Remarkable changes in sediment characteristics, palaeoenvironments and direction of sediment transport occur across a surface named the ‘A–P surface’. This surface demarcates a major shift from dominantly aggradational (lower highstand systems tract) to fully progradational (upper highstand systems tract) parasequence stacking. In the Po system, this surface also reflects evolution from a wave‐dominated to river‐dominated deltaic system. Identifying the A‐P surface through detailed palaeoecological and compositional data can help guide interpretation of highstand systems tracts in the rock record, especially where facies assemblages and their characteristic geometries are difficult to discern from physical sedimentary structures alone. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...