ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Delft : Nederlandse Commissie voor Geodesie
    Associated volumes
    Call number: S 90.0083(70)
    In: Publications on geodesy
    Type of Medium: Series available for loan
    Pages: XVI, 179 S. , Ill., graph. Darst.
    Series Statement: Publications on geodesy 70
    Classification:
    Gravimetry
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-22
    Description: The backbone of the Amsterdam Ordnance Datum (NAP) is a network of about 400 primary subsurface markers. Relative movements between the primary subsurface markers are measured with spirit levelling once in 10–20 years. However, little is known about absolute vertical movements of the primary network. This information is indispensable for the interpretation of water level measurements at the tide gauges along the Dutch coast. It may be provided by gravity measurements. Here we present a time-series analysis of more than twenty years of gravity measurements at the stations Westerbork, Epen, Zundert, and Radio Kootwijk. It reveals that only station Epen shows a statistically significant movement of -0.252±0.066 µGal yr−1, which corresponds to an uplift of 1.3±0.5 mm yr−1. For the other stations, the trends are statistically not different from zero at a significance level of 0.05. Corrections for water table variations are found to be indispensable; peak-to-peak amplitudes range from 4 µGal (Westerbork) to 28 µGal (Radio Kootwijk). Depsite some fundamental objections, corrections for instrumental offsets reduce the data scatter. First experiments with 7 years of soil moisture data acquired at station Radio Kootwijk reveal that the gravity signal of soil moisture variations has a standard deviation of 2.2 µGal, which is comparable to the noise standard deviation of measured gravity.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-22
    Description: The Dutch height system, called Normaal Amsterdams Peil (NAP), is realized purely trough leveling between designated benchmarks. In a cycle of 10 years secondary NAP benchmarks, generally located in buildings and civil engineering structures, are surveyed to provide actual and reliable heights. However, leveling campaigns are very labor-intensive and take a lot a of time, resulting in high costs. Furthermore, the planning of secondary leveling is based on limited prior knowledge. Instead of yearly leveling of each bench mark within a region, the strategy could be optimized such that deforming areas are visited more often and stable areas less. Trends estimated from historical NAP data could be used, but these provide insufficient information about stability and reliability of published heights. Therefore we propose to use a nationwide deformation map derived from InSAR satellite data to optimize the planning of the secondary leveling campaigns. By using InSAR deformations combined with information of the NAP benchmarks such as measurement date, type and location, a planning tool has been developed. The first targeted leveling of NAP benchmarks using this tool is planned for 2020.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-01
    Description: We present a local quasi-geoid (QG) model which combines a satellite-only global gravity model with local data sets using weighted least squares. The QG is computed for an area comprising the Netherlands, Belgium, and the southern North Sea. It uses a two-scale spherical radial basis function model complemented by bias parameters to account for systematic errors in the local gravity data sets. Variance factors are estimated for the noise covariance matrices of all involved data sets using variance component estimation. The standard deviation (SD) of the differences between the computed QG and GPS/leveling data is 0.95 and 1.52 cm for the Netherlands and Belgium, respectively. The fact that the SD of the control data is about 0.60 and 1.20 cm for the Netherlands and Belgium, respectively, points to a lower mean SD of the computed QG model of about 0.7 cm for the Netherlands and 1.0 cm for Belgium. The differences to a QG model computed with the remove-compute-restore technique range from −5.2 to 2.6 cm over the whole model domain and from −1.5 to 1.5 cm over the Netherlands and Belgium. A variogram analysis of the differences with respect to GPS/leveling data reveals a better performance of the computed QG model compared to a remove-compute-restore-based QG model for wavelengths 〉100 km for Belgium but not for the Netherlands. The latter is due to the fact that at the spatial scales resolved by the global gravity model, variance component estimation assigns significantly lower weights to the local data set in favor of the global gravity model.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-26
    Description: Abstract
    Description: hBG2018 is the hybrid quasi-geoid model for Belgium, including both the Belgian mainland and the Exclusive Economic Zone. The hBG18 quasi-geoid heights are referred to the ETRS89/GRS80 ellipsoid. It is computed using radar altimetry data, terrestrial gravity anomalies, airborne gravity disturbances, and shipboard gravity anomalies. The quasi-geoid computation is based on the remove-compute-restore procedure. The long-wavelength signal content in the data is reduced by removing the contribution of the GOCO05S global gravity field model complete to degree 280. At the very short wavelengths, residual terrain modelling (RTM) is applied to the shipboard, terrestrial and airborne gravity datasets using EuroDEM as input data. The residual disturbing potential is parameterized over the target area using Spherical Radial Basis Functions (SRBF). The SRBF coefficients and bias parameters for the sets of gravity anomalies and disturbances are estimated using weighted least-squares with regularization, assuming white noise. To support the exploitation of the hBG2018 gravimetric quasi-geoid for the conversion of GNSS derived heights to the TAW/DNG height system, several post-processing steps were applied. First, as the TAW/DNG height system is a mean-tide height system (i.e., mean-tide crust = zero crust over mean-tide geoid) the quasi-geoid was transformed from the zero-tide to the mean tide system. Thereafter, a corrector surface (also called 'innovation function') has been estimated from the differences between the geometric quasi-geoid at 3707 GNSS/leveling points and the gravimetric quasi-geoid. This surface also accounts for the difference between the fictitious datum point of the gravimetric hBG18 and the datum point of the TAW/DNG. Finally, the transformation from the tide-free permanent tide system adopted in the GNSS community and the mean-tide system adopted in TAW/DNG, has been applied. hBG18 replaces hBG03 as the official Belgian model since August 1, 2018. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Spherical Radial Basis Functions ; Belgium ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...