ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2008-07-01
    Print ISSN: 1866-7511
    Electronic ISSN: 1866-7538
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description:  — Observations based on relatively limited data recorded by sparsely distributed stations have indicated that regional seismic phase propagation (Lg and Sn) is very complex in the Middle East. Accurate characterization of regional seismic wave propagation in this region necessitates the use of a large number of seismic stations. We have compiled a large data set of regional and local seismograms recorded in the Middle East. This data set comprises approximately four years of data from national short-period networks in Turkey and Syria, data from temporary broadband arrays in Saudi Arabia and the Caspian Sea region, and data from GSN, MEDNET, and GEOFON stations in the Middle East. We have used this data set to decipher the character and pattern of regional seismic wave propagation. We have mapped zones of blockage as well as inefficient and efficient propagation for Lg, Pg, and Sn throughout the Middle East. Two tomographic techniques have been developed in order to objectively determine regions of lithospheric attenuation in the Middle East.¶We observe evidence of major increase in Lg attenuation, relative to Pg, across the Bitlis suture and the Zagros fold and thrust belt, corresponding to the boundary between the Arabian and Eurasian plates. We also observe a zone of inefficient Sn propagation along the Dead Sea fault system which coincides with low Pn velocities along most of the Dead Sea fault system and with previous observations of poor Sn propagation in western Jordan. Our observations indicate that in the northern portion of the Arabian plate (south of the Bitlis suture) there is also a zone of inefficient Sn propagation that would not have been predicted from prior measurements of relatively low Pn velocities. Mapped high attenuation of Sn correlates well with regions of Cenozoic and Holocene basaltic volcanism. These regions of uppermost mantle shear-wave attenuation most probably have anomously hot and possibly thin lithosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Continuous recordings of 17 broadband and short-period digital seismic stations from a newly established seismological network in Saudi Arabia, along with digital recordings from the broadband stations of the GSN, MEDNET, GEOFON, a temporary array in Saudi Arabia, and temporary short period stations in Oman, were analysed to study the lithospheric structure of the Arabian Plate and surrounding regions. The Arabian Plate is surrounded by a variety of types of plate boundaries: continental collision (Zagros Belt and Bitlis Suture), continental transform (Dead Sea fault system), young seafloor spreading (Red Sea and the Gulf of Aden) and oceanic transform (Owen fracture zone). Also, there are many intraplate Cenozoic processes such as volcanic eruptions, faulting and folding that are taking place. We used this massive waveform database of more than 6200 regional seismograms to map zones of blockage, inefficient and efficient propagation of the Lg and Sn phases in the Middle East and East Africa. We observed Lg blockage across the Bitlis Suture and the Zagros fold and thrust belt, corresponding to the boundary between the Arabian and Eurasian plates. This is probably due to a major lateral change in the Lg crustal waveguide. We also observed inefficient Lg propagation along the Oman mountains. Blockage and inefficient Sn propagation is observed along and for a considerable distance to the east of the Dead Sea fault system and in the northern portion of the Arabian Plate (south of the Bitlis Suture). These mapped zones of high Sn attenuation, moreover, closely coincide with extensive Neogene and Quaternary volcanic activity. We have also carefully mapped the boundaries of the Sn blockage within the Turkish and Iranian plateaus. Furthermore, we observed Sn blockage across the Owen fracture zone and across some segments of the Red Sea. These regions of high Sn attenuation most probably have anomalously hot and possibly thin lithospheric mantle (i.e. mantle lid). A surprising result is the efficient propagation of Sn across a segment of the Red Sea, an indication that active seafloor spreading is not continuous along the axis of the Red Sea. We also investigated the attenuation of Pn phase (QPn) for 1–2 Hz along the Red Sea, the Dead Sea fault system, within the Arabian Shield and in the Arabian Platform. Consistent with the Sn attenuation, we observed low QPn values of 22 and 15 along the western coast of the Arabian Plate and along the Dead Sea fault system, respectively, for a frequency of 1.5 Hz. Higher QPn values of the order of 400 were observed within the Arabian Shield and Platform for the same frequency. Our results based on Sn and Pn observations along the western and northern portions of the Arabian Plate imply the presence of a major anomalously hot and thinned lithosphere in these regions that may be caused by the extensive upper mantle anomaly that appears to span most of East Africa and western Arabia.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...