ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Hanover, NH : Corps of Engineers, U.S. Army, Cold Regions Research and Engineering Laboratory,
    Associated volumes
    Call number: ZSP-202-329
    In: Research report
    Description / Table of Contents: CONTENTS: General Introduction. - Part I. Spatial and temporal variations in sea ice deformatfon. - Introduction. - Approach. - Site location and data collection procedures. - Data analysis. - Strain results. - Comparison of mesoscale deformation with macroscale deformation. - Nature of the ice pack rotation. - Conciusion. - Literature cited. - Part Il. Comparison of mesoscale strain measurements with linear drift theory predictions. - Introduction. - List of symbols. - Linear drift equations. - Ice drift solutions. - Comparison of theory with mesoscale measurements. - A more general linear constitutive law. - Conclusions. - Literature cited. - Appendix Relative magnitudes of differential drift forces. - Abstract.
    Description / Table of Contents: Measurements of mesoscale sea ice deformation over a region approximately 20 km in diameter were made over a five-week period in the spring of 1972 at the main AIDJEX camp in the Beaufort Sea. They have been analyzed to determine nonlinearities in the ice velocity field (due to the discrete small-scale nature of the ice pack), as well as a continuum mode of deformation represented by a least squares strain rate tensor and vorticity. The deformation rate time series between Julian day 88 and 113 exhibited net areal changes as large as 3% and deformation rates up to 0.16% per hour. In the principal axis coordinate system, the strain rate typically exhibited a much larger compression (or extension) along one axis than along the other. Persistent cycles at ~12-hour wavelengths were observed in the divergence rate. A comparison of the average residual error with the average strain rate magnitude indicated that strains measured on a scale of 10 km or greater can serve as a valid measure of the continuum motion of the sea ice. This conclusion is also substantiated by a comparison between the mesoscale deformation, and macroscale deformation measured over a ~100-km-diameter region. Vorticity calculations indicate that at low temporal frequencies ( 〈 0.04 hr^-1 ) the whole mesoscale array rotates essentially as an entity and consequently the low frequency vorticity can accurately be estimated from the rotation of a single floe. (Part I) A comparison of mesoscale strain measurements with the atmospheric pressure field and the wind velocity field indicated that the ice divergence rate and vorticity followed the local pressure and wind divergence with significant correlation. For low atmospheric pressures and converging winds, the divergence rate was negative with the vorticity being counterclockwise. The inverse behavior was observed for high pressures and diverging winds. This behavior agreed with predictions based upon the infinite boundary solution of a linearized drift theory in the absence of gradient current effects and using the constitutive law proposed by Glen for pack ice. The best least squares values of the constitutive law parameters [Eta] and [Zeta] were found to be given by ~10^12 kg sec^-1. Using typical divergence rates, these values yielded compressive stresses of the magnitude of 10^5 N m^-1, which are similar to values suggested by the Parmerter and Coon ridge model. In general, the infinite boundary solution of the linear drift equation indicates that in a low pressure region that is reasonably localized in space, the ice would be expected to converge for high compactness (winter) and diverge for low compactness (summer). Calculations were also carried out using a more general linear viscoelastic constitutive law that includes memory effects and that includes a generalized Hooke's law as well as the Glen law as special cases. A best fit of this more general calculation with strain measurements indicates, overall, a better agreement with viscous behavior than with elastic behavior, with the frequency behavior of the estimated "viscosities" similar to the Glen law behavior at temporal frequencies less than ~0.01 hr^-1 (Part II)
    Type of Medium: Series available for loan
    Pages: v, 37 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 329
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: ZSP-202-315
    In: Research report
    Description / Table of Contents: CONTENTS: Preface. - Introduction. - Part 1:Mesoscale strain measurements on the Beaufort Sea pack ice. - Abstract. - Introduction. - Previous work. - Site location. - Results. - Correlation of synoptic aerial photography with measured strains. - Correlation of estimated wind stress and strain. - Conclusions. - Literature cited. - Part II: Structure of a multiyear pressure ridge. - Abstract. - Introduction. - Profiles. - Internal properties. - Largest ridge sail. - Conclusions. - Literature cited. - Part III: Top and bottom roughness of a multiyear ice floe. - Abstract. - Introduction. - Results. - Literature cited. - Part IV:Airphoto analysis of ice deformation in the Beaufort Sea Abstract. - Introduction. - Study area. - Method of analysis. - Ice deformations. - Net deformational changes. - Pressure ridge distribution. - Summary and conclusions. - Literature cited. - Part V: Data on morphological and physical characteristics of sea ice in the Beaufort Sea.
    Description / Table of Contents: Mesoscale strain measurements on the Beaufort Sea pack ice; Structure of a multiyear pressure ridge; Top and bottom roughness of a multiyear ice floe; Airphoto analysis of ice deformation in the Beaufort Sea; Data on morphological and physical characteristics of sea ice in the Beaufort Sea.
    Type of Medium: Series available for loan
    Pages: iii, 66 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 315
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: ZSP-201-78/4
    In: CRREL Report, 78-4
    Description / Table of Contents: The use of radio-echo sounding records to indicate the presence of internal layers within large ice sheets is of interest to glaciologists because it offers a means of tracking the internal properties of the ice sheets over large distances. The interpretation of the reflections obtained in this manner is more valuable, however, if a physical property change relating to the glaciological regime can be related to the dielectric property change producing the radio-echo reflections. In this report, we use the measured physical properties of core to bedrock taken at Cape Folger, East Antarctica (66 deg 22 min s, 111 deg (E), 324-m depth), to compute a profile of dielectric properties and from this, a depth-reflection coefficient profile for comparison with observed radio-echo reflections. The measurements available on physical properties are: density variations, bubble size and shape changes, and crystal fabric variations. The depths of the strong reflections shown on the available radio-echo records are in reasonable agreement with the depths corresponding to the highest reflection coefficients computed from the combined physical property measurements. In calculations to differentiate the separate effects of different physical properties, it appears that density variations account for the primary contributions to the calculated dielectric property changes corresponding to the highest reflection coefficients. However, bubble changes alone can also account for reasonable, though lower, reflection coefficients at the appropriate depths. Crystal fabric variations correspond poorly with the reflection locations. Density variations are normally associated with depositional events in the history of the ice sheet.
    Type of Medium: Series available for loan
    Pages: vi, 12 Seiten , Illustrationen
    Series Statement: CRREL Report 78-4
    Language: English
    Note: CONTENTS Abstract Preface Nomenclature Introduction Derivation of the power reflection coefficient-depth variation Possible sources of dielectric constant variation with depth in ice sheets Ice density variations Effect of macroscopic impurity layers Effect of microscopic impurtty layers Changes in inclusion geometry Effect of crystal orientation changes Physical properties of the Cape Folger core Density-depth profile Air bubble-geometry depth profile Crystal orientation-depth profile Radio-echo sounding data Results and conclusions Literature cited
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 87 (1983), S. 4314-4317 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 11 (1991), S. 347-350 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Results of uniaxial compression test are compared to porosity and chlorophyll content of granular seaice samples, collected in the Weddell Sea from June to November of 1986. Compressive failure stresses are significantly correlated with the total porosity of the ice, but exhibit no correlation with chlorophyll concentration. We suggest that high chlorophyll concentrations may accompany low ice strengths only because high porosities, which are responsible for low mechanical strength, can be linked to sea-ice biology. High concentrations of ice algae may be either cause or effect of high porosities (through absorption of solar radiation in the first case or due to enhanced nutrient supply and environmental space in the second case). As a cause of high porosities, ice organisms could therefore indirectly influence the spring breakup of floes and thus the course of the ablation season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cores and brine samples from sea ice of the Weddell Sea were analyzed for nutrients (phosphate, nitrate and silicate), salinity and chlorophyll a during winter. Stratigraphic analyses of the cores were also carried out. Bulk nutrient concentrations in the sea ice fluctuated widely and did not correlate with salinity. Nutrient concentrations in cores were normalized to sea-water salinity to facilitate comparison. They varied between zero and two or three times those measured in the water column. Differentiation into young and old sea ice, however, revealed that nutrient concentrations in the young ice in many cases corresponded to those in surface seawater. In older ice, nutrients showed signs of increase as well as depletion or exhaustion relative to the water column. Differentiation of core sections according to ice textural classes and analyses of brine samples clarified some relationships between nutrients, salinity and algal biomass. Most of the changes in the nutrient concentrations are attributed to an increase in biological activity as the seasons progress. Silicate is expected to become the first nutrient likely to limit growth of diatoms in the ice which is ascribed to slower regeneration or dissolution of this nutrient relative to phosphate and nitrate. A consequence of silicate exhaustion may be the succession of different algal assemblages, from a diatom dominated community to one in which autotrophic flagellates form the largest component.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-12
    Description: Author(s): S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, K. Ackley, S. Tiwari, C. F. Da Silva, and G. Mitselmakher We present a method for detection and reconstruction of the gravitational wave (GW) transients with the networks of advanced detectors. Originally designed to search for transients with the initial GW detectors, it uses significantly improved algorithms, which enhance both the low-latency searches w… [Phys. Rev. D 93, 042004] Published Thu Feb 11, 2016
    Keywords: Gravitational Experiment
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-12-01
    Print ISSN: 0722-4060
    Electronic ISSN: 1432-2056
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-11
    Description: The surface flooding of Antarctic sea ice in summer covers 50% or more of the sea-ice area in the major summer ice packs, the western Weddell and the Bellingshausen-Amundsen Seas. Two CRREL ice mass-balance buoys were deployed on the Amundsen Sea pack in late December 2010 from the icebreaker Oden, bridging the summer period (January–February 2011). Temperature records from thermistors embedded vertically in the snow and ice showed progressive increases in the depth of the flooded layer (up to 0.3–0.35 m) on the ice cover during January and February. While the snow depth was relatively unchanged from accumulation (
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-11
    Description: The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...