ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Boyd, Philip W; Abraham, Edward R (2001): Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep Sea Research Part II: Topical Studies in Oceanography, 48(11-12), 2529-2550, https://doi.org/10.1016/S0967-0645(01)00007-8
    Publication Date: 2024-02-01
    Description: Active fluorescence (fast repetition rate fluorometry, FRRF) was used to follow the photosynthetic response of the phytoplankton community during the 13-day Southern Ocean Iron RElease Experiment (SOIREE). This in situ iron enrichment was conducted in the polar waters of the Australasian-Pacific sector of the Southern Ocean in February 1999. Iron fertilisation of these high nitrate low chlorophyll (HNLC) waters resulted in an increase in the photosynthetic competence (Fv/Fm) of the resident cells from around 0.20 to greater than 0.60 (i.e. close to the theoretical maximum) by 10/11 days after the first enrichment. Although a significant iron-mediated response in Fv/Fm was detected as early as 24 h after the initial fertilisation, the increase in Fv/Fm to double ambient levels took 6 days. This response was five-fold slower than observed in iron enrichments (in situ and in vitro) in the HNLC waters of the subarctic and equatorial Pacific. Although little is known about the relationship between water temperature and Fv/Fm, it is likely that low water temperatures - and possibly the deep mixed layer - were responsible for this slow response time. During SOIREE, the photosynthetic competence of the resident phytoplankton in iron-enriched waters increased at dissolved iron levels above 0.2 nM, suggesting that iron limitation was alleviated at this concentration. Increases in Fv/Fm of cells within four algal size classes suggested that all taxa displayed a photosynthetic response to iron enrichment. Other physiological proxies of algal iron stress (such as flavodoxin levels in diatoms) exhibited different temporal trends to iron-enrichment than Fv/Fm during the time-course of SOIREE. The relationship between Fv/Fm, algal growth rate and such proxies in Southern Ocean waters is discussed.
    Keywords: CT; DATE/TIME; DEPTH, water; Fast repetition rate fluorometry (FRRF) (Kolber & Falkowski, 1993); Fluorescence, chlorophyll; Fluorometer, Chelsea Instruments; JGOFS; Joint Global Ocean Flux Study; Photosynthetic competence; Quantum Irradiance Meter, LI-COR Inc.; Radiation, photosynthetically active; SOIREE; SOIREE-track; Southern Ocean - Australasian-Pacific Sector; Tangaroa; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 54120 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Abraham, Edward R; Law, Cliff S; Boyd, Philip W; Lavender, Samantha J; Maldonado, Maria T; Bowie, Andrew R (2000): Importance of stirring in the development of an iron-fertilized bloom. Nature, 407(6805), 727-730, https://doi.org/10.1038/35037555
    Publication Date: 2024-02-01
    Description: The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive (Kierstead and Slobodkin, 1953; Okubo, 1980). In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring (Gower et al., 1980, doi:10.1038/288157a0; Holligan et al., 1993, doi:10.1029/93GB01731). Despite the apparent importance of horizontal stirring for plankton ecology, this process remains poorly characterized. Here we investigate the development of a discrete phytoplankton bloom, which was initiated by the iron fertilization of a patch of water (7 km in diameter) in the Southern Ocean (Boyd et al., 2000, doi:10.1038/35037500). Satellite images show a striking, 150-km-long bloom near the experimental site, six weeks after the initial fertilization. We argue that the ribbon-like bloom was produced from the fertilized patch through stirring, growth and diffusion, and we derive an estimate of the stirring rate. In this case, stirring acts as an important control on bloom development, mixing phytoplankton and iron out of the patch, but also entraining silicate. This may have prevented the onset of silicate limitation, and so allowed the bloom to continue for as long as there was sufficient iron. Stirring in the ocean is likely to be variable, so blooms that are initially similar may develop very differently.
    Keywords: CT; DATE/TIME; File format; File size; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; SOIREE; SOIREE-track; Southern Ocean - Australasian-Pacific Sector; Tangaroa; Underway cruise track measurements; Uniform resource locator/link to raw data file
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-01
    Keywords: CT; DATE/TIME; DEPTH, water; JGOFS; Joint Global Ocean Flux Study; LATITUDE; LONGITUDE; Sample code/label; SOIREE; SOIREE-track; Southern Ocean - Australasian-Pacific Sector; Tangaroa; Temperature, water; Underway cruise track measurements; XBT
    Type: Dataset
    Format: text/tab-separated-values, 30590 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.
    Description: The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co- limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.
    Description: SAGE was jointly funded through the New Zealand Foundation for Research, Science and Technology (FRST) programs (C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for specific collaborations by the US National Science Foundation from grants OCE-0326814 (Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand International Science and Technology (ISAT) linkages fund provided additional funding (Archer and Ziolkowski), and the many collaborator institutions also provided valuable support.
    Keywords: Air-sea gas exchange ; Iron fertilisation ; Ocean biogeochemistry ; SOLAS
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the ‘iron hypothesis’. For this reason, it is important to understand the response of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive. In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring. Despite the apparent importance of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 391 (1998), S. 577-580 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Diffusive processes are often used to represent the formation of spatial patterns in biological systems. Here I show how patchiness may be generated in planktonic ecosystems through non-diffusive advection. Plankton distributions in oceanic surface waters can be characterized by the spectra of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-06-01
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-05-24
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-03-19
    Print ISSN: 0025-3162
    Electronic ISSN: 1432-1793
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...