ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 12 (1989), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract A freeze-fixation technique was used to examine the distribution of ice crystals and the pattern of freezing in peach flower buds. In dormant buds, ice crystals formed at localized sites within the bud axis and scales. Ice crystal formation disrupted tissues and mechanical injury from repetitive freezethaw cycles was apparent. There was evidence of ice formation in the floral organs of dormant buds exposed to −25°C but none observed in buds exposed to either −5 or −10°C. The distribution of ice crystals was different in deacclimated buds. In addition to large ice crystals within the subtending bud axis and scales, evidence of large crystals within the developing floral organs was noted. These crystals were most prominent in the lower portions of the developing flower and peduncle, and caused a separation of the epidermal layer from adjacent cells. The distribution of ice crystals within both dormant and deacclimated peach flower buds corroborated the results of previous thermal analysis experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The relationship between vascular development and the distribution of ice within overwintering forsythia flower buds was examined. Previous experiments demonstrated that ice formed in dormant buds within the bud scales, sepals, and in the peduncle and lower portions of the developing flower. The current study demonstrated that these tissues contained columns of primary xylem forming a continuous network with the subtending stem tissues. The vascular traces within the developing petals, anther filaments and pistil were not fully differentiated. Xylem vessels were not present and only procambial cells were observed. Large ice crystals did not accumulate in these tissues. When vascular development resumed in the spring, coincident changes in the distribution of ice within buds were noted. Observations were consistent with the hypothesis that ice propagates into buds via the vascular system, and that the segregation of ice within bud tissues reflects the distribution of xylem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Molecular investigation of the process of cold acclimation in woody plants has been limited by the superimposition of dormancy-related events on the process of cold tolerance development. To address this limitation, we have used the grape Vitis labruscana L. ev. Concord to develop a system in which the developmental programme of dormancy can be induced seperately from cold acclimation. Using this system we have characterized differential accumulation of several proteins in grape buds during the normally superimposed endodormancy and cold acclimation programmes, and in buds which have entered only the endodormancy programme. A set of 47 kD proteins accumulated during endodormancy without cold acclimation to a level similar to that found in endodormant and cold-acclimated buds, but without any associated increase in bud cold-acclimation level. However, a 27 kD LEA-like protein accumulated only in cold acclimated buds. We conclude that expression of the 47 kD glycoprotein is endodormancy-related, but is not strictly related to the development of cold acclimation, while the 27 kD protein appears to be more specific to cold acclimation. In addition to strengthening the association of LEA-like proteins with cold acclimation, this system allows more specific assessment of cold acclimation-associated phenomena in overwintering buds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 11 (1988), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The response of apple twig tissue to a freezing stress was examined using a combination of low temperature scanning electron microscopy and freeze substitution techniques. Bark and wood tissues responded differently. In the bark, large extracellular ice crystals were observed in the cortex. The adjacent cortical cells collapsed and a large reduction in cell volume was observed. The extent of cell collapse throughout the bark was not uniform. Cells in the periderm, phloem and cambium exhibited little change in cell volume compared to cortical cells. Large extracellular ice crystals were not observed in the xylem or pith tissues. The xylem ray parenchyma and pith cells did not collapse in response to a freezing stress, but retained their original shape. The pattern of ice formation and cell response was not observed to change with season or the level of cold acclimation. This study supported the concept that bark and xylem tissues exhibit contrasting freezing behaviour. The observations were consistent with the idea that water in bark freezes extracellularly while water in xylem ray parenchyma and pith cells may supercool to temperatures approaching –40 °C prior to freezing intracellularly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Frost stress ; Ice formation (leaf) ; Leaf (ice formation) ; Stress (freezing) ; Triticum (frost stress)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wheat leaf pieces were excised and freeze-fixed in the field, preparatory to low-temperature scanning electron microscopy to study distribution of ice within leaf blades, and associated cell shapes, during natural frosts. Pieces of leaf blades from wheat plants (Triticum aestivum L. 7942H1-20-8) overwintering in Indiana, USA (January, 1991), were excised and immediately freeze-fixed by manually plunging in melting freon. Cells in controls were turgid and extracellular ice was absent. The leaves of the frost-stressed plants froze at about — 2.4° C, and at that temperature extracellular ice was mainly located sub-epidermally, including in the substomatal cavity, and occupied about 14% of the fracture faces. The frequency of ice particles per unit leaf area in two specimens was 14 and 210 · mm−2 (about 140 and 2100 · g−1 leaf fresh-weight basis). At -9.0° C, ice filled the extracellular spaces, occupying 61% of the fracture faces. Cells were somewhat collapsed at -2.4° C and were much more collapsed at -9.0° C. The epidermal cells were more collapsed than the mesophyll cells. Tissue structure (connections with adjacent cells), wall flexibility, and ice growth may all have influenced the shapes of the collapsing cells. The experiments demonstrate the feasibility of freeze-fixation in the field. The sub-epidermal location of most ice indicates that in the field either (i) ice is nucleated sub-epidermally (implying both the presence of nucleators and the presence of liquid water in the sub-epidermal spaces) or (ii) ice is nucleated on the leaf surface, then propagates into the leaf probably through stomata.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1615-6102
    Keywords: Arabidopsis thaliana ; Cell ultrastructure ; Cold acclimation ; Starch ; Sugars
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We studied cell ultrastructure and carbohydrate levels in the leaf tissue ofArabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Freezing tolerance of the leaves from 26 day old plants was determined after 48 h and 10 days at 4°C. Acclimation treatment of 48 h decreased the lethal freezing temperature from −5.7°C to −9.4°C. Freezing tolerance was not altered further by acclimation at 4 °C for 10 days. Ultrastructural changes in the parenchyma cells were evident after 6 to 24 h of cold acclimation. The plasma membrane showed signs of extensive turnover. Evidence of membrane invaginations and sequestering of membrane material was observed. In addition, numerous microvesicles, paramural bodies, and fragments of endoplasmic reticulum were noticed in the vicinity of plasma membrane. Modifications in the structure of cell membranes were evident after 5 days of exposure to low temperature. Small, darkly stained globules were seen on the plasma membrane, tonoplast, chloroplast envelope membrane, mitochondrion outer membrane, dictyosome cisternae membrane, and microvesicle membrane. As far as we are aware, this type of membrane modification has not been described previously in plant cells exposed to low temperature. We propose to call these structures membraglobuli. Acclimation treatment also increased the concentrations of soluble sugars and starch. These observations suggest that cold acclimation inA. thaliana induces changes in both plasma membrane properties and carbohydrate composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1980-07-01
    Print ISSN: 0011-183X
    Electronic ISSN: 1435-0653
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1980-11-01
    Print ISSN: 0002-1962
    Electronic ISSN: 1435-0645
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1978-09-01
    Print ISSN: 0011-183X
    Electronic ISSN: 1435-0653
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1979-01-01
    Print ISSN: 0011-183X
    Electronic ISSN: 1435-0653
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...