ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2015-08-13
    Description: Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of sub-monolayer colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensional porous silicon (PSi) scaffold. The PSi matrix was thermally oxidized under different conditions to change the interfacial oxide thickness. QDs embedded in a PSi matrix with ∼0.4 nm of interfacial oxide exhibited reduced photoluminescence intensity and nearly five times shorter radiative lifetimes (∼16 ns) compared to QDs immobilized within completely oxidized, porous silica (PSiO 2 ) frameworks (∼78 ns). The exponential dependence of QD lifetime on interfacial oxide thickness in the PSi scaffolds suggests charge transfer plays an important role in the exciton dynamics.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-17
    Description: We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2 by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample, $\bar{\tau }_e = (3.75 \pm 0.89)\times 10^{-3}$ . We compare the extracted signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on $\bar{\tau }_e$ , and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales 100 Mpc.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-09
    Description: The surface layer of the southeast Pacific Ocean (SEP) requires an input of cold, fresh water to balance heat gain and evaporation from air-sea fluxes. Models typically fail to reproduce the cool sea surface temperatures (SST) of the SEP, limiting our ability to understand the variability of this climatically important region. We estimate the annual heat budget of the SEP for the period 2004 - 2009, using data from the upper 250 m of the Stratus mooring, located at 85°W 20°S, and from Argo floats. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at more than 15 depth levels. We use a new method for estimating the advective component of the heat budget that combines Argo profiles and mooring velocity data, allowing us to calculate monthly profiles of heat advection. Averaged over the 6 year study period, we estimate a cooling advective heat flux of -41 ± 29 W m-2, accomplished by a combination of the mean gyre circulation, Ekman transport, and eddies. This compensates for warming fluxes of 32 ± 4 W m-2 due to air-sea fluxes and 7 ± 9 W m-2 due to vertical mixing and Ekman pumping. A salinity budget exhibits a similar balance, with advection of freshwater (-60 psu m) replenishing the freshwater lost through evaporation (47 psu m) and Ekman pumping (14 psu m).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-16
    Description: Analytical Chemistry DOI: 10.1021/ac503063c
    Print ISSN: 0003-2700
    Electronic ISSN: 1520-6882
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-10
    Description: Frequency spectra from deep-ocean near-bottom acoustic measurements obtained contemporaneously with wind, wave, and seismic data are described and used to determine the correlations among these data and to discuss possible causal relationships. Microseism energy appears to originate in four distinct regions relative to the hydrophone: wind waves above the sensors contribute microseism energy observed on the ocean floor; a fraction of this local wave energy propagates as seismic waves laterally, and provides a spatially integrated contribution to microseisms observed both in the ocean and on land; waves in storms generate microseism energy in deep water that travels as seismic waves to the sensor; and waves reflected from shorelines provide opposing waves that add to the microseism energy. Correlations of local wind speed with acoustic and seismic spectral time series suggest that the local Longuet-Higgins mechanism is visible in the acoustic spectrum from about 0.4 Hz to 80 Hz. Wind speed and acoustic levels at the hydrophone are poorly correlated below 0.4 Hz, implying that the microseism energy below 0.4 Hz is not typically generated by local winds. Correlation of ocean floor acoustic energy with seismic spectra from Oahu and with wave spectra near Oahu imply that wave reflections from Hawaiian coasts, wave interactions in the deep ocean near Hawaii, and storms far from Hawaii contribute energy to the seismic and acoustic spectra below 0.4 Hz. Wavefield directionality strongly influences the acoustic spectrum at frequencies below about 2 Hz, above which the acoustic levels imply near-isotropic surface wave directionality.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-10-03
    Description: Entanglement, a key feature of quantum mechanics, is a resource that allows the improvement of precision measurements beyond the conventional bound attainable by classical means. This results in the standard quantum limit, which is reached in today's best available sensors of various quantities such as time and position. Many of these sensors are interferometers in which the standard quantum limit can be overcome by using quantum-entangled states (in particular spin squeezed states) at the two input ports. Bose-Einstein condensates of ultracold atoms are considered good candidates to provide such states involving a large number of particles. Here we demonstrate spin squeezed states suitable for atomic interferometry by splitting a condensate into a few parts using a lattice potential. Site-resolved detection of the atoms allows the measurement of the atom number difference and relative phase, which are conjugate variables. The observed fluctuations imply entanglement between the particles, a resource that would allow a precision gain of 3.8 dB over the standard quantum limit for interferometric measurements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esteve, J -- Gross, C -- Weller, A -- Giovanazzi, S -- Oberthaler, M K -- England -- Nature. 2008 Oct 30;455(7217):1216-9. doi: 10.1038/nature07332.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kirchhoff-Institut fur Physik, Universitat Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18830245" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-03-30
    Description: The hypothesis that endogenous cholecystokinin (CCK) released from the small intestine during feeding causes satiety was tested in rat pups, 9 to 12 days old. Intragastric administration of soybean trypsin inhibitor, a procedure that releases CCK from the small intestine, decreased the subsequent intake of a test meal. This effect was reversed by prior treatment with MK-329, a selective antagonist of CCK at alimentary-type CCK (CCK-A) receptors. Thus, endogenous, small intestinal CCK can cause satiety in the neonatal rat and this effect involves CCK-A receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weller, A -- Smith, G P -- Gibbs, J -- MH00149/MH/NIMH NIH HHS/ -- MH40010/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 30;247(4950):1589-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Cornell University Medical College, White Plains, NY.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2321020" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzodiazepinones/pharmacology ; Cholecystokinin/antagonists & inhibitors/*physiology ; Devazepide ; Eating/*physiology ; Intestine, Small/*metabolism ; Rats ; Rats, Inbred Strains ; Receptors, Cholecystokinin/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-04
    Description: The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 x 10(-3) and 1.42 x 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quick, Joshua -- Loman, Nicholas J -- Duraffour, Sophie -- Simpson, Jared T -- Severi, Ettore -- Cowley, Lauren -- Bore, Joseph Akoi -- Koundouno, Raymond -- Dudas, Gytis -- Mikhail, Amy -- Ouedraogo, Nobila -- Afrough, Babak -- Bah, Amadou -- Baum, Jonathan H J -- Becker-Ziaja, Beate -- Boettcher, Jan Peter -- Cabeza-Cabrerizo, Mar -- Camino-Sanchez, Alvaro -- Carter, Lisa L -- Doerrbecker, Juliane -- Enkirch, Theresa -- Garcia-Dorival, Isabel -- Hetzelt, Nicole -- Hinzmann, Julia -- Holm, Tobias -- Kafetzopoulou, Liana Eleni -- Koropogui, Michel -- Kosgey, Abigael -- Kuisma, Eeva -- Logue, Christopher H -- Mazzarelli, Antonio -- Meisel, Sarah -- Mertens, Marc -- Michel, Janine -- Ngabo, Didier -- Nitzsche, Katja -- Pallasch, Elisa -- Patrono, Livia Victoria -- Portmann, Jasmine -- Repits, Johanna Gabriella -- Rickett, Natasha Y -- Sachse, Andreas -- Singethan, Katrin -- Vitoriano, Ines -- Yemanaberhan, Rahel L -- Zekeng, Elsa G -- Racine, Trina -- Bello, Alexander -- Sall, Amadou Alpha -- Faye, Ousmane -- Faye, Oumar -- Magassouba, N'Faly -- Williams, Cecelia V -- Amburgey, Victoria -- Winona, Linda -- Davis, Emily -- Gerlach, Jon -- Washington, Frank -- Monteil, Vanessa -- Jourdain, Marine -- Bererd, Marion -- Camara, Alimou -- Somlare, Hermann -- Camara, Abdoulaye -- Gerard, Marianne -- Bado, Guillaume -- Baillet, Bernard -- Delaune, Deborah -- Nebie, Koumpingnin Yacouba -- Diarra, Abdoulaye -- Savane, Yacouba -- Pallawo, Raymond Bernard -- Gutierrez, Giovanna Jaramillo -- Milhano, Natacha -- Roger, Isabelle -- Williams, Christopher J -- Yattara, Facinet -- Lewandowski, Kuiama -- Taylor, James -- Rachwal, Phillip -- Turner, Daniel J -- Pollakis, Georgios -- Hiscox, Julian A -- Matthews, David A -- O'Shea, Matthew K -- Johnston, Andrew McD -- Wilson, Duncan -- Hutley, Emma -- Smit, Erasmus -- Di Caro, Antonino -- Wolfel, Roman -- Stoecker, Kilian -- Fleischmann, Erna -- Gabriel, Martin -- Weller, Simon A -- Koivogui, Lamine -- Diallo, Boubacar -- Keita, Sakoba -- Rambaut, Andrew -- Formenty, Pierre -- Gunther, Stephan -- Carroll, Miles W -- Medical Research Council/United Kingdom -- England -- Nature. 2016 Feb 11;530(7589):228-32. doi: 10.1038/nature16996. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK. ; The European Mobile Laboratory Consortium, Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada. ; Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada. ; European Centre for Disease Prevention and Control (ECDC), 171 65 Solna, Sweden. ; National Infection Service, Public Health England, London NW9 5EQ, UK. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 2FL, UK. ; Postgraduate Training for Applied Epidemiology (PAE, German FETP), Robert Koch Institute, D-13302 Berlin, Germany. ; National Infection Service, Public Health England, Porton Down, Wiltshire SP4 0JG, UK. ; Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland. ; Robert Koch Institute, D-13302 Berlin, Germany. ; University College London, London WC1E 6BT, UK. ; Paul-Ehrlich-Institut, Division of Veterinary Medicine, D-63225 Langen, Germany. ; Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK. ; Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven, Leuven B-3000, Belgium. ; Ministry of Health Guinea, Conakry BP 585, Guinea. ; Kenya Medical Research Institute, Nairobi P.O. BOX 54840 - 00200, Kenya. ; National Institute for Infectious Diseases L. Spallanzani, 00149 Rome, Italy. ; Friedrich-Loeffler-Institute, D-17493 Greifswald, Germany. ; Federal Office for Civil Protection, Spiez Laboratory, 3700 Spiez, Switzerland. ; Janssen-Cilag, Stockholm, Box 7073 - 19207, Sweden. ; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK. ; Institute of Virology, Technische Universitat Munchen, D-81675 Munich, Germany. ; Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. ; Institut Pasteur Dakar, Dakar, DP 220 Senegal. ; Laboratoire de Fievres Hemorragiques de Guinee, Conakry BP 5680, Guinea. ; Sandia National Laboratories, PO Box 5800 MS1363, Albuquerque, New Mexico 87185-1363, USA. ; Ratoma Ebola Diagnostic Center, Conakry, Guinea. ; MRIGlobal, Kansas City, Missouri 64110-2241, USA. ; Expertise France, Laboratoire K-plan de Forecariah en Guinee, 75006 Paris, France. ; Federation des Laboratoires - HIA Begin, 94163 Saint-Mande cedex, France. ; Laboratoire de Biologie - Centre de Traitement des Soignants, Conakry, Guinea. ; World Health Organization, Conakry BP 817, Guinea. ; London School of Hygiene and Tropical Medicine, London EC1E 7HT, UK. ; Norwegian Institute of Public Health, PO Box 4404 Nydalen, 0403 Oslo, Norway. ; Public Health Wales, Cardiff CF11 9LJ, UK. ; Defence Science and Technology Laboratory (Dstl) Porton Down, Salisbury SP4 0JQ, UK. ; Oxford Nanopore Technologies, Oxford OX4 4GA, UK. ; Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK. ; Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham B15 2TH, UK. ; Centre of Defence Pathology, Royal Centre for Defence Medicine, Birmingham B15 2TH, UK. ; Queen Elizabeth Hospital, Birmingham B12 2TH, UK. ; Bundeswehr Institute of Microbiology, D-80937 Munich, Germany. ; Institut National de Sante Publique, Conakry BP 1147, Guinea. ; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA. ; Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh EH9 2FL, UK. ; University of Southampton, South General Hospital, Southampton SO16 6YD, UK. ; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, PHE Porton Down, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840485" target="_blank"〉PubMed〈/a〉
    Keywords: Aircraft ; Disease Outbreaks/statistics & numerical data ; Ebolavirus/classification/*genetics/pathogenicity ; *Epidemiological Monitoring ; Genome, Viral/*genetics ; Guinea/epidemiology ; Hemorrhagic Fever, Ebola/*epidemiology/*virology ; Humans ; Mutagenesis/genetics ; Mutation Rate ; Sequence Analysis, DNA/*instrumentation/*methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-12-11
    Description: Oceanographic Engineering of the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology, Woods Hole, MA 02543. Oceanographers have long sought to verify the theoretical Ekman transport relation, which predicts that a steady wind stress acting together with the Coriolis force will produce a transport of water to the right of the wind. In situ measurements of wind and ocean currents provide a detailed view of this phenomenon. By separating the wind-driven current from the measured total current and by averaging over a long record, it is found that the observed transport is consistent with theoretical Ekman transport to within about 10 percent. In this case the wind-driven transport is strongly surface trapped, with 95 percent occurring in the upper 25 meters as a result of fair summer weather.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Price, J F -- Weller, R A -- Schudlich, R R -- New York, N.Y. -- Science. 1987 Dec 11;238(4833):1534-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17784291" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1985-03-29
    Description: Measurements made from the Research Platform FLIP provide some of the first direct observations of three-dimensional flow within the surface mixed layer of the ocean. Relatively narrow regions of downwelling flow were found within the mixed layer, in coincidence with bands of convergent surface flow. At mid-depth in the mixed layer, the downwelling flow had magnitudes of up to 0.2 meter per second and was accompanied by a downwind, horizontal jet of comparable magnitude. There is some evidence that these motions transport heat and phytoplankton within the mixed layer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weller, R A -- Dean, J P -- Price, J F -- Francis, E A -- Marra, J -- Boardman, D C -- New York, N.Y. -- Science. 1985 Mar 29;227(4694):1552-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17795332" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...